References
Béduneau, A., Saulnier, P., Hindré, F., Clavreul, A., Leroux, J.-C., & Benoit, J.-P. (2007). Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments.Biomaterials,28(33), 498–4990. https://doi.org/10.1016/j.biomaterials.2007.05.014
Bhargava, B., Reddy, N. K., Karthikeyan, G., Raju, R., Mishra, S., Singh, S., Waksman, R., Virmani, R., & Somaraju, B. (2006). A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: Evaluation in a porcine model. Catheterization and Cardiovascular Interventions, 67(5), 698–702. https://doi.org/10.1002/ccd.20698
Brito, L., & Amiji, M. (2007). Nanoparticulate carriers for the treatment of coronary restenosis. International Journal of Nanomedicine, 2(2), 143–161. https://doi.org/10.2147/nano.2007.2.2.143
Chakraborty, S., Kar, S., & Mazumder, B. (2021). Disease-specific biomaterials for targeted drug delivery: Emerging needs, signals, and challenges. ACS Biomaterials Science & Engineering, 7(9), 4191–4224. https://doi.org/10.1021/acsbiomaterials.1c00623
Déglise, P., Nguyen, T. V., & Déglise, C. (2022). Intimal hyperplasia: Challenges and perspectives. Journal of Clinical Medicine, 11(1), 183. https://doi.org/10.3390/jcm11010183
Farb, A., Sangiorgi, G., Carter, A. J., Walley, V. M., Edwards, W. D., Schwartz, R. S., & Virmani, R. (2002). Pathology of acute and chronic coronary stenting in humans. Circulation, 99(1), 44–52. https://doi.org/10.1161/01.cir.99.1.44
Fowkes, F. G. R., Rudan, D., Rudan, I., Aboyans, V., Denenberg, J. O., McDermott, M. M., Norman, P. E., Sampson, U. K., Williams, L. J., Mensah, G. A., & Criqui, M. H. (2013). Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. The Lancet, 382(9901), 1329–1340. https://doi.org/10.1016/S0140-6736(13)61249-0
Groo, A.-C., Saulnier, P., & Gimel, J.-C. (2018). Understanding the adsorption mechanism of monoclonal antibodies on lipid nanocapsules: Toward targeted nanomedicines. Langmuir, 34(33), 9837–9846. https://doi.org/10.1021/acs.langmuir.8b01547
Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., & Benoit, J. P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharmaceutical Research, 19(6), 875–880. https://doi.org/10.1023/A:1016121319668
Hirsjärvi, S., Sancey, L., Dufort, S., Belloche, C., Vanpouille-Box, C., Garcion, E., Coll, J. L., Hurbin, A., & Benoit, J. P. (2012). Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. International Journal of Pharmaceutics, 438(1–2), 107–115. https://doi.org/10.1016/j.ijpharm.2012.08.028
Huynh, N. T., Roger, E., Lautram, N., Benoit, J. P., & Saulnier, P. (2009). The rise and rise of lipid nanocapsules as multifaceted nanomedicines. Therapeutic Delivery, 1(4), 435–456. https://doi.org/10.4155/tde.10.19
Li, J., Wang, Y., Liang, R., Chen, J., & Zhang, H. (2016). Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomedicine, 12(5), 1239–1255. https://doi.org/10.1016/j.nano.2016.01.017
Matougui, N., Boge, L., Groo, A. C., Umerska, A., Pellequer, Y., Ringstad, L., Bysell, H., & Saulnier, P. (2016). Nanoparticles designed for overcoming the mucus barrier for oral delivery of calcitonin. International Journal of Pharmaceutics, 500(1–2), 63–72. https://doi.org/10.1016/j.ijpharm.2015.12.046
Melnik, E., Konevega, L., Stupin, V., & Konstantinova, E. (2022). Intimal hyperplasia in vascular grafts: The role of surface microstructure. International Journal of Molecular Sciences, 23(19), 11238. https://doi.org/10.3390/ijms231911238
Minkov, I., Miroux, A., Giacometti, S., Müller, M., Lehmann, L., Proust, J. E., & Grossiord, J. L. (2005). Biocompatible surfactant-free preparation of liposomes, polymersomes, and lipid nanocapsules. Journal of Colloid and Interface Science, 284(1), 228–237. https://doi.org/10.1016/j.jcis.2004.10.048
Mylonaki, I., Allara, E., Chocron, S., Dubourg, Q., Alcazar, D. P., Trimaille, A., Katsiki, N., Blomberg, A., & Giral, P. (2018). Direct and indirect comparison of the effects of antihypertensive drugs on atherosclerosis and intima-media thickness: A systematic review and network meta-analysis. Journal of Clinical Hypertension, 20(11), 1501–1508. https://doi.org/10.1111/jch.13469
Nemenoff, R. A., Simpson, P. A., Furgeson, S. B., Kaplan-Albuquerque, N., Crossno, J., Garl, P., & Offermanns, S. (2008). The role of RhoA and Rho kinase in vascular smooth muscle cell proliferation. Vascular Pharmacology, 48(2–3), 50–57. https://doi.org/10.1016/j.vph.2007.10.009
Palazzo, C., Karim, R., Evrard, B., & Piel, G. (2016). Drug delivery nanocarriers to cross the blood-brain barrier. In Drug delivery across the blood-brain barrier (pp. 1-22). Elsevier. https://doi.org/10.1016/B978-0-323-42866-8.00001-0
Saba Niaz, Guillaume Bastiat Partner et al. (2024). Covalently Crosslinked Lipid Nanocapsule-Based Hydrogels Induces the Modern Drug Delivery Efficacy, Biosensors and Nanotheranostics, 3(1), 1-10, 9800.
Saulnier, P., Benoit, J.-P., & Heurtault, B. (2002). Design and characterization of lipid nanocapsules. Pharmaceutical Research, 19(6), 875–880. https://doi.org/10.1023/A:1016121319668
Umerska, A., Mouzouvi, C. R., Bigot, A., Saulnier, P., & Costantino, H. R. (2015). Polymeric nanoparticles for increasing oral bioavailability of a poorly water-soluble drug: Effect of particle size and crystalline state on solubility and dissolution rate. International Journal of Pharmaceutics, 494(1), 211–220. https://doi.org/10.1016/j.ijpharm.2015.08.062
Urimi, D., Patel, S. R., Patel, P. P., & Patel, B. R. (2021). Lipid nanoparticles: An innovative technique for drug delivery systems. Materials Today: Proceedings, 50, 1429–1435. https://doi.org/10.1016/j.matpr.2021.09.267
Westedt, U., Steinhäuser, I., & Kissel, T. (2002). Influence of process parameters on preparation of loperamide-loaded poly(lactic-co-glycolic acid) nanoparticles: A factorial design study. International Journal of Pharmaceutics, 232(1–2), 101–112. https://doi.org/10.1016/s0378-5173(01)00922-7