Optimizing Precision Agriculture Through AI and Robotic Innovation
Prabal Barua 1*, Tanvir Alam Chowdhury Emon 2, Maloy Baroi 3
Applied Agriculture Sciences 3(1) 1-10 https://doi.org/10.25163/agriculture.3110234
Submitted: 26 February 2025 Revised: 17 April 2025 Published: 22 April 2025
AI-powered Accuracy Agriculture helps the agricultural sector by combining sustainable progress with higher output, resource protection and improved decision-making capabilities.
Abstract
Background: Artificial Intelligence (AI) along with robotics is being integrated into farming systems enhancing efficiency and productivity while utilizing the data captured by drones, sensors, weather stations, and satellites. Farmers are able to make decisions concerning the irrigation, fertilization, chemical treatments, and pest management to be more protective of the environment and to enhance sustainability. Methods: Analyze Precision Agriculture and Technologies (PA) through the lens of AI and Robotics with the aid of scholarly articles, case studies, and applicable literature. The assessment will help understand the technologies concerning data collection, analytics using artificial intelligence (AI), and robotic work as pertaining to crops management. Results: The results suggest that productivity, environmental sustainability, and resource, water for example, fragmentation are maximized under AI based Pa systems. Management of crop disease, nutrient deficiency, and real-time soil moisture data guarantees that water is utilized efficiently. Decreases in operation expenditures, higher yields, and optimum depletion of several costly resources was a common finding from all case study models. Conclusions: The integration of precision agriculture and artificial intelligence (AI) have promising opportunities when it comes to bolstering the sustainable advancement of agriculture. This note emphasizes the relevance of, at least when the returns are expected to be waited for, there must framing and groundwork done to ensure broader adoption and fair distribution.
Keywords: Precision Agriculture (PA), Artificial Intelligence (AI), Smart Farming Technologies, Sustainable Agriculture, Robotics in Farming.
References
A survey on the Role of IoT in agriculture for the Implementation of Smart Livestock environment. (2022). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9681084
Addicott, J. E. (2019). The precision farming revolution. In Springer eBooks (pp. 1–35). https://doi.org/10.1007/978-981-13-9686-1_1
Adewusi, N. a. O., Asuzu, N. O. F., Olorunsogo, N. T., Olorunsogo, N. T., Adaga, N. E., & Daraojimba, N. D. O. (2024). AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 1, 2276–2285. https://doi.org/10.30574/wjarr.2024.21.1.0314
Altalak, M., Uddin, M. A., Alajmi, A., & Rizg, A. (2022). Smart Agriculture Applications using Deep Learning Technologies: A survey. Applied Sciences, 12(12), 5919. https://doi.org/10.3390/app12125919
Barua, P., & Mitra, A. (2022). Indigenous Adaptation Practices by the crop farmers of Northern Region of Bangladesh. IUP Journal of Knowledge Management, 16 (4), 40-60.
Barua, P., Barua, C. (2024). Exploration of Different Study on Organic and Chemical Cultivation in Agricultural Sector. Parana Journal of Science and Education, 10(1), 4-9. https://doi.org/10.5281/zenodo.10559749
Barua, P., Eslamian, S. (2021). Exploitation of agro-chemicals and its effect on health of farmers and environment on south-eastern coast of Bangladesh. Frontiers of Agriculture and Food Technology, 11 (2), 001-009.
Barua, P., Islam, M., & Mitra, A. (2023). Accumulation of Heavy Metals in Associated Irrigated Water, Soil and Production of Tomato around the Export Processing Zone of Bangladesh. Asian Journal of Water, Environment and Pollution, 20 (4), 61-67. https://doi.org/10.3233/AJW230052
Barua, P., Rahman, S. H., Eslamian, S. (2022). Adaptation Practices by the Farmers for Reduction of Salinisation Problem in the Paddy Fields of South-Eastern Coast of Bangladesh. Asian Journal of Water, Environment and Pollution, 19(6), 37 – 44. https://doi.org/10.3233/AJW220086
Big data in precision agriculture: Weather forecasting for future farming. (2015, September 1). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/7375220
Botta, A., Cavallone, P., Baglieri, L., Colucci, G., Tagliavini, L., & Quaglia, G. (2022). A review of robots, perception, and tasks in precision agriculture. Applied Mechanics, 3(3), 830–854. https://doi.org/10.3390/applmech3030049
Chen, X., Sun, Y., Zhang, Q. (2020). Two-stage grasp strategy combining CNN-based classification and adaptive detection on a flexible hand. Applied Journal of Soft Computing, 97 (3): 110-120. https://doi.org/10.1016/j.asoc.2020.106729
Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 2017, 141, 351–356
Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2022). Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems With Applications, 16, 200102. https://doi.org/10.1016/j.iswa.2022.200102
Duff, H., Hegedus, P., Loewen, S., Bass, T., & Maxwell, B. (2021). Precision Agroecology. Sustainability, 14(1), 106. https://doi.org/10.3390/su14010106
Eissa, M. (2024). Precision Agriculture using Artificial Intelligence and Robotics. Journal of Research in Agriculture and Food Sciences., 1(1), 35. https://doi.org/10.5455/jrafs.20240404014009
Evaluation of Machine Learning Approaches for Precision Farming in Smart Agriculture System: A Comprehensive Review. (2024). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10504121
Golisz, E., Wielewska, I., & Roman, K. (2022). Probabilistic Model of Drying Process of Leek. Applied Sciences, 12 (2), 11-25. https://doi.org/10.3390/app122211761
Górnicki, K. Kaleta, A., & Kosiorek, K. (2022). Mathematical Description of Changes of Dried Apple Characteristics during Their Rehydration. Journal of Applied Sciences, 12 (3), 495-510. https://doi.org/10.3390/app12115495
Goswami, R., Dasgupta, P., Saha, S., Venkatapuram, P., & Nandi, S. (2016). Resource integration in smallholder farms for sustainable livelihoods in developing countries. Cogent Food & Agriculture, 2(1). https://doi.org/10.1080/23311932.2016.1272151
Haleem, A., Javaid, M., Singh, R. P., & Suman, R. (2021). Applications of Artificial Intelligence (AI) for cardiology during COVID-19 pandemic. Sustainable Operations and Computers, 2, 71-78.
Harrison, R. D., Thierfelder, C., & van den Berg, J. (2019). Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management, 24 (3), 318–330. https://doi: 10.1016/j.jenvman.2019.05.011
Hu, Z., Xu, L., Cao, L., Liu, S., & Wang, H. (2019). Application of non-orthogonal multiple access in wireless sensor networks for smart agriculture. Water Management, 7(3), 60-80. https://doi: 10.1109/ACCESS.2019.2924917.
Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A review. Sensors, 17(8), 1781. https://doi.org/10.3390/s17081781
Júnior, M. R. B., De Almeida Moreira, B. R., Carreira, V. D. S., De Brito Filho, A. L., Trentin, C., De Souza, F. L. P., Tedesco, D., Setiyono, T., Flores, J. P., Ampatzidis, Y., Da Silva, R. P., & Shiratsuchi, L. S. (2024). Precision agriculture in the United States: A comprehensive meta-review inspiring further research, innovation, and adoption. Computers and Electronics in Agriculture, 221, 108993. https://doi.org/10.1016/j.compag.2024.108993
Kumar, V., Sharma, K. V., Kedam, N., Patel, A., Kate, T. R., & Rathnayake, U. (2024). A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology, 8, 100487. https://doi.org/10.1016/j.atech.2024.100487
Li, D., Wang, R., Xie, C., & Liu, H. ( 2020). A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors, 20(5), 80-94. https://doi.org/10.3390/s20030578
Liakos, V., & Vellidis, G. (2021). Sensing with Wireless Sensor Networks. In Progress in precision agriculture (pp. 133–157). https://doi.org/10.1007/978-3-030-78431-7_5
Liu, X., Zhou, S., Chen, S., & Yi, Z. (2022). Buckwheat Disease Recognition Based on Convolution Neural Network. Applied Sciences, 12(5), 47-67. https://doi.org/10.3390/app12094795
Lopez, M. D. (2023). Evaluation of Multispectral and Hyperspectral Imagery for Phenotyping Grapevine Genetic Mapping Populations. University of California, Davis.
Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T. (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15(1). https://doi.org/10.1186/s13007-019-0402-3
Md Habibur Rahman, Tanjila Islam, Mohammad Hamid Hasan Amjad, Md Shihab Sadik Shovon, Md. Estehad Chowdhury, Md Rahatul Ashakin, Bayazid Hossain, Proshanta Kumar Bhowmik, Md Nurullah, Atiqur Rahman Sunny (2024). "Impact of Internet of Things (IoT) on Healthcare in Transforming Patient Care and Overcoming Operational Challenges", Journal of Angiotherapy, 8(11),1-8,10041 . https://doi.org/10.25163/angiotherapy.81110041
Moayedi, M., & Hayati, D. (2023). Identifying strategies for adaptation of rural women to climate variability in water scarce areas. Frontiers in Water, 5(3), 117-125. https://doi.org/10.3389/frwa.2023.1177684
Mohasin, M., & Barua, P. (2020). Influence of Soil Organic Content on Salt Marsh Growth in the Natural Habitat of South-Eastern Coast of Bangladesh. Environmental Contaminants Reviews, 3(2): 50-55. https://doi.org/10.26480/ecr.02.2020.50.55
Morel, K., & Cartau, K. (2023). Adaptation of organic vegetable farmers to climate change: An exploratory study in the Paris region. Agriculture and Society, 10 (2), 110-120. https://doi.org/10.1016/j.agsy.2023.103703
Oliver, M. A., Bishop, T. F., & Marchant, B. P. (Eds.). (2013). Precision agriculture for sustainability and environmental protection (Vol. 39). Abingdon, UK: Routledge.
Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision Livestock farming Technology: Applications and challenges of animal welfare and climate change. Agriculture, 14(4), 620. https://doi.org/10.3390/agriculture14040620
Paul, R., Baidya, A., Alam, A., & Satpati, L. (2021). An assessment of cyclone-induced vulner-ability and change in land use and land cover (LULC) of G-Plot in Patharpratima C. D. Block of South 24 Parganas district, West Bengal. Indian Journal of Geography and Environment Management, 5(3), 1–13.
Prakash, C., Singh, L. P., Gupta, A., & Lohan, S. K. (2023). Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation. Sensors and Actuators a Physical, 362, 114605. https://doi.org/10.1016/j.sna.2023.114605
Pronti, A., & Coccia, M. (2020). Agroecological and conventional agricultural systems: comparative analysis of coffee farms in Brazil for sustainable development. International Journal of Sustainable Development, 23(3/4), 223. https://doi.org/10.1504/ijsd.2020.115223
Rahman, M. H., Aunni, S. A. A., Ahmed, B., Rahman, M. M., Shabuj, M. M. H., Das, D. C., Akter, M. S., Numan, A. A. (2024). "Artificial intelligence for Improved Diagnosis and Treatment of Bacterial Infections", Microbial Bioactives, 7(1),1-18,10036. https://doi.org/10.25163/microbbioacts.7110036
Rahman, M. H., Biswash, M. A. R., Debnath, A., Siddique, M. A. B., Rahman, M. M., Rabbi, M. M. H., Mou, M. A. (2025). "The Future of AI in Laboratory Medicine: Advancing Diagnostics, Personalization, and Healthcare Innovation", Journal of Primeasia, 6(1),1-6,10151. https://doi.org/10.25163/primeasia.6110151
Rahman, M. H., Biswash, M. A. R., Siddique, M. A. B., Rahman, M. M., Mou, M. A., Debnath, A., Fatin, M. (2025). "Significance of Artificial intelligence in clinical and genomic diagnostics", Journal of Precision Biosciences, 7(1),1-14,10149. https://doi.org/10.25163/biosciences.7110149
Rahman, M. H., Islam, T., Hossen, M. E., Chowdhury, M. E., Hayat, R., Shovon, &. M. S. S., Shabbir, H. -. A. -., Alamgir, M., Akter, S., Chowdhury, R., Sunny, A. R. (2024). "Machine Learning in Healthcare: From Diagnostics to Personalized Medicine and Predictive Analytics", Journal of Angiotherapy, 8(12),1-8,10160. https://doi.org/10.25163/angiotherapy.81210160
Saleem, S. R., Zaman, Q. U., Schumann, A. W., & Naqvi, S. M. Z. A. (2023). Variable rate technologies. In Precision Agriculture (pp. 103–122). https://doi.org/10.1016/b978-0-443-18953-1.00010-6
Sharma, R., Kumar, N., & Sharma, B. B. (2022). Applications of Artificial Intelligence in Smart Agriculture: A review. Lecture Notes in Electrical Engineering, 135–142. https://doi.org/10.1007/978-981-16-8248-3_11
Singh, A. K. (2022). Precision agriculture in india–opportunities and challenges. Indian Journal of Fertilisers, 18(4), 308-331.
Soussi, A., Zero, E., Sacile, R., Trinchero, D., & Fossa, M. (2024). Smart Sensors and Smart Data for Precision Agriculture: A review. Sensors, 24(8), 2647. https://doi.org/10.3390/s24082647
Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31): 450-470. https://doi.org/10.1007/s11356-021-14332-4
Sun, Y., Liu, Y., Zhou, H., & Hu. W. (2021). Plant Diseases Identification through a Discount Momentum Optimizer in Deep Learning. Applied Science, 11 (3), 94-104. https://doi.org/10.3390/app11209468
Takeshima, H., & Joshi, P. K. (2019). Protected agriculture, precision agriculture, and vertical farming: Brief reviews of issues in the literature focusing on the developing region in Asia (Vol. 1814). Intl Food Policy Res Inst.
Thakur, D., Kumar, Y., Kumar, A., & Singh, P. K. (2019). Applicability of wireless sensor networks in precision agriculture: a review. Wireless Personal Communications, 107(1), 471–512. https://doi.org/10.1007/s11277-019-06285-2
Trajer, J., Winiczenko, R. & Drózdz, B. (2021). Analysis of Water Consumption in Fruit and Vegetable Processing Plants with the Use of Artificial Intelligence. Applied Science, 11 (2): 101-120. https://doi.org/10.3390/app112110167
Verlag Eugen Ulmer GmbH. (2024). EU-Rotate_N – a decision support system – to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations - WRAP: Warwick Research Archive Portal. https://wrap.warwick.ac.uk/2819/
Wei, X., Li, B., Lu, H., & Lü, H. (2022). Numerical Simulation of Airflow Distribution in a Pregnant Sow Piggery with Centralized Ventilation. Applied Sciences , 12 (2): 115-125. https://doi.org/10.3390/app122211556
Xu, W., Sun, L., Zhen, C., & Liu, B. ( 2022). Deep Learning-Based Image Recognition of Agricultural Pests. Applied Science, 12 (2): 80-90. https://doi.org/10.3390/app122412896
Yadav, A., Yadav, K., Ahmad, R., & Abd-Elsalam, K. (2023). Emerging frontiers in nanotechnology for precision agriculture: Advancements, hurdles and prospects. Agrochemicals, 2(2), 220–256. https://doi.org/10.3390/agrochemicals2020016
Yang, G., Bao, Y., & Liu, Z. (2017). Localization and identification of pests in tea plantations basedn image saliency analysis and convolutional neural network. Transitioanl Journal of Chinese Society of Agricultural Engineering, 33 (3): 156–162. https:/doi.org/10.11975/j.issn.1002-6819.2017.06.020
Yépez-Ponce, D. F., Salcedo, J. V., Rosero-Montalvo, P. D., & Sanchis, J. (2023). Mobile robotics in smart farming: current trends and applications. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1213330
Zhang, X., Zhang, L., Hu, X., & Wang, K. (2022). Simulation of Soil Cutting and Power Consumption Optimization of a Typical Rotary Tillage Soil Blade. Applied Science, 12 (1), 80-95. https://doi.org/10.3390/app12168177
Zhao, T., Wang, S., Ouyang, C., Chen, M., Liu, C., Zhang, J., ... & Wang, L. (2024). Artificial intelligence for geoscience: Progress, challenges and perspectives. The Innovation.
View Dimensions
View Altmetric
Save
Citation
View
Share