Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
RESEARCH ARTICLE   (Open Access)

Smartphone-Integrated Point-of-Care Sensor for Rapid and Sensitive Malaria Detection in Resource-Limited Settings

Meredith Stewart 1, Douglas Donaldson 1, Avni A. Argun 1, Muhit Rana 1*

+ Author Affiliations

Biosensors and Nanotheranostics 4(1) 1-7 https://doi.org/10.25163/biosciences.4110098

Submitted: 02 October 2024  Revised: 13 January 2025  Published: 14 January 2025 

A low-cost, portable diagnostic device enables sensitive, rapid malaria detection, aiding intervention programs to reduce transmission and improve outcomes globally.

Abstract


Background: Malaria remains a major global health challenge, disproportionately affecting low-income countries and causing 450,000–720,000 deaths annually. Despite declining mortality rates due to containment strategies, the rise of drug-resistant Plasmodium falciparum threatens these gains. Current diagnostic methods, such as rapid diagnostic tests (RDTs) and microscopy, lack sensitivity, particularly in detecting asymptomatic infections. These undiagnosed cases contribute to ongoing malaria transmission, underscoring the urgent need for sensitive, cost-effective, and portable diagnostic tools for point-of-care (POC) use. This study aims to develop a low-cost, field-portable diagnostic device for rapid and sensitive detection of Plasmodium species, including P. falciparum, to enhance malaria intervention efforts in resource-limited settings. Methods: We designed an electrochemical sensor integrated with a mobile phone-based diagnostic platform. The device detects pan-Plasmodium and P. falciparum biomarkers in blood using enzyme-free amplification via SPAAC-mediated click chemistry. Four primer sets were optimized to target 18S rRNA sequences, and their sensitivity and specificity were evaluated. Chronoamperometric measurements were performed with a smartphone-linked portable potentiostat, enabling real-time data analysis and result reporting. Results: The 27/31 nucleotide primer set showed superior sensitivity and specificity. The assay achieved a detection limit of 100 pM with minimal off-target reactions. Chronoamperometric results were consistent with optical density measurements, validating the device's accuracy. The smartphone application effectively processed data for parasite quantification, though algorithmic refinement is needed to address minor inconsistencies. Conclusion: This low-cost and field-portable sensor demonstrates potential as a rapid, affordable, and sensitive tool for for point-of-care malaria detection in resource-limited settings. Its ability to identify low parasitemia levels can improve disease surveillance and intervention strategies. Future work will focus on optimizing the mobile application and conducting field validation studies to ensure reliability in diverse settings.

Keywords: Malaria diagnosis, Electrochemical sensing, Plasmodium falciparum detection, Point-of-care technology, Low-resource diagnostics

References


Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A. C., Khim, N., . . . Menard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature, 505(7481), 50-55. doi:10.1038/nature12876

Gilles, H., & Adetokunbo, L. (2002). Short Textbook of Public Health, Medicine for the Tropics (4 ed.). London: CRC Press.

Haldar, K., Bhattacharjee, S., & Safeukui, I. (2018). Drug resistance in Plasmodium. Nat Rev Microbiol, 16(3), 156-170. doi:10.1038/nrmicro.2017.161

Holding, P. A., & Snow, R. W. (2001). Impact of Plasmodium falciparum malaria on performance and learning: review of the evidence. Am J Trop Med Hyg, 64(1-2 Suppl), 68-75. doi:10.4269/ajtmh.2001.64.68

Imwong, M., Nguyen, T. N., Tripura, R., Peto, T. J., Lee, S. J., Lwin, K. M., . . . Nosten, F. (2015). The epidemiology of subclinical malaria infections in South-East Asia: findings from cross-sectional surveys in Thailand-Myanmar border areas, Cambodia, and Vietnam. Malar J, 14, 381. doi:10.1186/s12936-015-0906-x

Imwong, M., Stepniewska, K., Tripura, R., Peto, T. J., Lwin, K. M., Vihokhern, B., . . . White, N. J. (2016). Numerical Distributions of Parasite Densities During Asymptomatic Malaria. J Infect Dis, 213(8), 1322-1329. doi:10.1093/infdis/jiv596

Imwong, M., Suwannasin, K., Kunasol, C., Sutawong, K., Mayxay, M., Rekol, H., . . . Dondorp, A. M. (2017). The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis, 17(5), 491-497. doi:10.1016/S1473-3099(17)30048-8

Joanny, F., Lohr, S. J., Engleitner, T., Lell, B., & Mordmuller, B. (2014). Limit of blank and limit of detection of Plasmodium falciparum thick blood smear microscopy in a routine setting in Central Africa. Malar J, 13, 234. doi:10.1186/1475-2875-13-234

Kihara, M., Carter, J. A., & Newton, C. R. (2006). The effect of Plasmodium falciparum on cognition: a systematic review. Trop Med Int Health, 11(4), 386-397. doi:10.1111/j.1365-3156.2006.01579.x

Maitland, K. (2016). Severe Malaria in African Children - The Need for Continuing Investment. N Engl J Med, 375(25), 2416-2417. doi:10.1056/NEJMp1613528

Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D., Fukuda, M. M., & Artemisinin Resistance in Cambodia 1 Study, C. (2008). Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med, 359(24), 2619-2620. doi:10.1056/NEJMc0805011

Ouattara, A. F., Raso, G., Edi, C. V., Utzinger, J., Tanner, M., Dagnogo, M., & Koudou, B. G. (2011). Malaria knowledge and long-lasting insecticidal net use in rural communities of central Cote d'Ivoire. Malar J, 10, 288. doi:10.1186/1475-2875-10-288

Rossi, G., De Smet, M., Khim, N., Kindermans, J. M., & Menard, D. (2017). Emergence of Plasmodium falciparum triple mutant in Cambodia. Lancet Infect Dis, 17(12), 1233. doi:10.1016/S1473-3099(17)30635-7

Wu, L., van den Hoogen, L. L., Slater, H., Walker, P. G., Ghani, A. C., Drakeley, C. J., & Okell, L. C. (2015). Comparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategies. Nature, 528(7580), S86-93. doi:10.1038/nature16039

(WHO), W. H. O. (2015a). Guidelines for the treatment of marlaria. 3. Retrieved from http://apps.who.int/iris/bitstream/10665/162441/1/9789241549127_eng.pdf

(WHO), W. H. O. (2015b). World Malaria Report.

(WHO), W. H. O. (2016). Malaria: Diagnostic testing. Retrieved from http://www.who.int/malaria/areas/diagnosis/en/

Supplementary Material
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
167
View
0
Share