Biopesticides in Sustainable Agriculture: Enhancing Targeted Pest Control and Ecosystem Health
Ayesha Areej1, Muhammad Usama1, Umer Zulfiqar1, Fatima Sarwar1, Maryam1, Aneela Ashiq 1*
Applied Agriculture Sciences 2(1) 1-8 https://doi.org/10.25163/agriculture.2110006
Submitted: 14 April 2024 Revised: 05 June 2024 Published: 07 June 2024
This review discusses the biopesticides’ potential in sustainable agriculture, offering targeted pest control, preserving ecosystems, and reducing reliance on synthetic chemicals.
Abstract
The growing demand for environmentally sustainable agriculture has increased the adoption of biopesticides in Integrated Pest Management (IPM). Derived from microorganisms, plants, or biological materials, biopesticides provide a safer, eco-friendly alternative to synthetic pesticides by targeting specific pests without harming non-target species. This review explores the efficacy and role of biopesticides in promoting sustainable agricultural practices. A selection of biopesticides, including Bacillus thuringiensis (Bt), neem extract, and insect growth regulators, is reviewed for their preparation and application. Field trials using randomized complete block designs with treatment and control plots are examined to evaluate the impact on pest populations, crop health, and yield. Microbial, biochemical, and plant-based biopesticides demonstrates effective pest population reductions. Microbial biopesticides like Bt exhibits high specificity, preserving beneficial organisms. Biochemical agents, including neem, disrupted pest cycles through non-lethal mechanisms. Combined treatments enhanced pest control and delayed resistance, further supporting their role in IPM. Biopesticides offer a promising alternative in IPM, contributing to improved soil health and reduced chemical pesticide reliance. Despite economic and environmental challenges, ongoing advances in biotechnology are expected to enhance their efficacy and adoption. Integrating biopesticides with biofertilizers provides a holistic approach to sustainable agriculture, promoting ecosystem balance and long-term agricultural resilience.
Keywords: Biopesticides, Integrated Pest Management (IPM), Sustainable agriculture, Microbial pesticides, Eco-friendly pest control.
References
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.628379
Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & EL-Shershaby, N. A. (2022). Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29, 3083. https://doi.org/10.1016/j.sjbs.2022.03.020
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key players in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13, 66. https://doi.org/10.1186/1475-2859-13-66
Bio-Fit. (n.d.). What are biofertilizers? - Page 2. Retrieved May 29, 2023, from https://bio-fit.eu/q8/lo1-why-biofertilizers?start=1
Biomcare. (n.d.). Microbiome analysis service | Research & pro services | Get quote. Retrieved May 28, 2023, from https://biomcare.com/
Britannica. (n.d.). Nitrogen-fixing bacteria | Definition & types. Retrieved May 29, 2023, from https://www.britannica.com/science/nitrogen-fixing-bacteria
BYJU’S. (n.d.). Rhizobium - Role of Rhizobium bacteria in nitrogen fixation. Retrieved May 29, 2023, from https://byjus.com/biology/rhizobium/
Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., Burt, A. F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: The future of food security and food safety. Microorganisms, 10. https://doi.org/10.3390/microorganisms10061220
Dwivedi, M. (2020). Gluconobacter. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi (pp. 521–544). https://doi.org/10.1016/B978-0-12-823414-3.00025-3
Emanga Alobwede. (n.d.). The advantages of algae as biofertilisers in agriculture. Retrieved May 29, 2023, from https://grantham.sheffield.ac.uk/journal-club-with-emanga-alobwede/
Hossain, M. N., Hossain, A. K. M. S., Mazumder, M. A. I., & Habib, A. (2022). Challenges and prospects of biofertilizers in sustainable agricultural development: A review. Agriculture, 12, 173. https://doi.org/10.3390/agriculture12020173
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487. https://doi.org/10.1016/j.bcab.2019.101487
Kumar, S., Diksha, Sindhu, S. S., & Kumar, R. (2022). Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Science, 3, 100094. https://doi.org/10.1016/j.crmicr.2021.100094
Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13, 1314. https://doi.org/10.1111/1751-7915.13517
Mahajan, R., Gupta, P., & Sharma, R. (2019). Biofertilizers: A sustainable approach towards agriculture. Journal of Applied Biology & Biotechnology, 7, 1–8. https://doi.org/10.7324/JABB.2019.70101
Mahmud, A. A., Upadhyay, S. K., Srivastava, A. K., & Bhojiya, A. A. (2021). Biofertilizers: A nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3, 100063. https://doi.org/10.1016/j.crsust.2021.100063
Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3, 1–7. https://doi.org/10.1094/CM-2004-0301-05-RV
Online Biology Notes. (n.d.). Biofertilizer- Advantages, types, methods of application and disadvantages. Retrieved May 29, 2023, from https://www.onlinebiologynotes.com/biofertilizer-advantages-types-methods-of-application-and-disadvantages/
Pedraza, R. O., Filippone, M. P., Fontana, C., Salazar, S. M., Ramírez-Mata, A., Sierra-Cacho, D., & Baca, B. E. (2020). Azospirillum. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi (pp. 73–105). https://doi.org/10.1016/B978-0-12-823414-3.00006-X
Reddy, P. M., James, E. K., & Ladha, J. K. (2002). Nitrogen fixation in rice. In Nitrogen Fixation at the Millennium (pp. 421–445). https://doi.org/10.1016/B978-044450965-9/50015-X
Rodriguez, L. R., & Lichtenstein, J. (2019). The importance of biofertilizers in sustainable agriculture: The case of the genus Bacillus. Sustainability, 11, 3641. https://doi.org/10.3390/su11133641
Sahu, N. K., Padhy, R. N., & Kumar, A. (2021). Microbial biofertilizers: A sustainable alternative for enhancing soil health and crop productivity. Current Science, 121, 571. https://doi.org/10.18520/cs/v121/i4/571-577
Saritha, M., & Prasad Tollamadugu, N. V. K. V. (2019). The status of research and application of biofertilizers and biopesticides: Global scenario. In Recent developments in applied microbiology and biochemistry (pp. 195–207). https://doi.org/10.1016/B978-0-12-816328-3.00015-5
Sheteiwy, M. S., Ali, D. F. I., Xiong, Y. C., Brestic, M., Skalicky, M., Hamoud, Y. A., Ulhassan, Z., Shaghaleh, H., AbdElgawad, H., Farooq, M., et al. (2021). Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biology, 21. https://doi.org/10.1186/s12870-021-02949-z
Simin, B. (2019). Nutrient dynamics and microbial interactions in the rhizosphere: Implications for sustainable agriculture. Applied and Environmental Soil Science, 2019, 1–15. https://doi.org/10.1155/2019/8151604
Singh, D. P., Singh, H. B., & Prabha, R. (2016). Microbial inoculants in sustainable agricultural productivity: Vol. 1: Research perspectives (pp. 1–343). Springer. https://doi.org/10.1007/978-81-322-2647-5/COVER
Stacey, G. (2006). The Rhizobium-legume nitrogen-fixing symbiosis. In Biology of the Nitrogen Cycle (pp. 147–163). https://doi.org/10.1016/B978-044452857-5.50011-4
Sumbul, A., Ansari, R. A., Rizvi, R., & Mahmood, I. (2020). Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27, 3634. https://doi.org/10.1016/j.sjbs.2020.08.004
Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-Rhizobium interactions. Frontiers in Plant Science, 9, 313. https://doi.org/10.3389/fpls.2018.00313
Yadav, A. N., Yadav, N., Kaur, J., & Kumar, R. (2020). Exploring the potential of bio-fertilizers in sustainable agricultural practices. Microbial Biotechnology, 13, 1892. https://doi.org/10.1111/1751-7915.13608
Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968. https://doi.org/10.1128/MMBR.63.4.968-989.1999
Zambrano-Mendoza, J. L., Sangoquiza-Caiza, C. A., Campaña-Cruz, D. F., & Yánez-Guzmán, C. F. (2021). Use of biofertilizers in agricultural production. Technology in Agriculture. https://doi.org/10.5772/intechopen.98264
View Dimensions
View Altmetric
Save
Citation
View
Share