EMAN RESEARCH PUBLISHING | Journal | <p>Bioactive potential from Marine sponge Callyspongia diffusa associated <em>Pseudomonus fluorescens</em> BCPBMS-1 and <em>Penicillum citrinum</em></p>
MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
RESEARCH ARTICLE   (Open Access)

Bioactive potential from Marine sponge Callyspongia diffusa associated Pseudomonus fluorescens BCPBMS-1 and Penicillum citrinum

Vasanthabharathi V a *, Jayalakshmi S a

+ Author Affiliations

Microbial Bioactives 1(1) 008-013 https://doi.org/10.25163/microbbioacts.11002A2221300318

Submitted: 22 February 2018  Revised: 14 March 2018  Published: 30 March 2018 

P. fluorescens BCPBMS-1 and P. citrinum strains produce bioactive metabolites with hemolytic activity and antioxidant activity whereas P. citrinum could be a valuable resource for anticancer metabolites.

Abstract


Background. The exploration for marine sponge associated novel microbes, producing rich and highly potential therapeutic metabolites, could diversify the scopes in life sciences. Since this has remained mostly untouched, the research was carried out to explore the bioactive potential of a marine sponge, Callyspongia diffusa associated microbes. Materials and methods. The strains selected from the C. diffusa were Pseudomonas fluorescens and Penicillium citrinum and their cell free extracts were tested for hemolytic activity on sheep blood agar media and antioxidant activity was assessed with lyophilized cell free extracts. Anticancer activity was performed by cytotoxicity assay against HEP-2 cell lines. Results. Cell free extracts of both P. fluorescens and P. citrinum demonstrated α-hemolysis on sheep blood agar. The lyophilized culture filtrate of P. fluorescens BCPBMS-1 and P. citrinum exhibited concentration dependent antioxidant activity revealing a positive linear relationship and ca. 85% and 74% antioxidant activities were obtained respectively with 1.0 mg/ ml of each of the sample. In case of cytotoxicity assay, P. citrinum demonstrated maximum viability of 96.61% at 1.95 µg/ ml of lyophilized culture filtrate and minimum viability of 20.33% at 1000 µg/ ml. Conclusion. The study proved that both P. fluorescens BCPBMS-1 and P. citrinum strains produce bioactive metabolites with hemolytic activity and antioxidant activity whereas P. citrinum could be a valuable resource for anticancer metabolites.

Key words: Callyspongia diffusa, marine microbe, antioxidant, anticancer, HEP-2 cancer cells.

References


Abad, M., Bedoya, L., & Bermejo, P. (2008). Natural Marine Anti-inflammatory Products. Mini-Reviews in Medicinal Chemistry, 8(8), 740–754. https://doi.org/10.2174/138955708784912148

Arora, D. S., & Chandra, P. (2010). Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian Journal of Microbiology, 41(3), 765–777. https://doi.org/10.1590/S1517-83822010000300029

Artasasta, M. A., Yanwirasti, Djamaan, A., & Handayani, D. (2017). Cytotoxic activity screening of ethyl acetate fungal extracts derived from the marine sponge Neopetrosia chaliniformisAR-01. Journal of Applied Pharmaceutical Science, 7(12), 174–178. https://doi.org/10.7324/JAPS.2017.71225

Asha Devi, N. K., Rajendran, R., & Karthik Sundaram, S. (2011). Isolation and characterization of bioactive compounds from marine bacteria. Indian Journal of Natural Products and Resources, 2(1), 59–64.

Atagazli, L., Greenhill, A. R., Melrose, W., Pue, A. G., & Warner, J. M. (2010). Is Penicillium citrinum implicated in sago hemolytic disease? Southeast Asian Journal of Tropical Medicine and Public Health, 41(3), 641–646.

Bonassoli, L. A., Bertoli, M., & Svidzinski, T. I. E. (2005). High frequency of Candida parapsilosis on the hands of healthy hosts. Journal of Hospital Infection, 59(2), 159–162. https://doi.org/10.1016/j.jhin.2004.06.033

Carballeira, N. M. (2008). New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Progress in Lipid Research. https://doi.org/10.1016/j.plipres.2007.10.002

Guo, S., Mao, W., Han, Y., Zhang, X., Yang, C., Chen, Y., … Xu, J. (2010). Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda. Bioresource Technology, 101(12), 4729–4732. https://doi.org/10.1016/j.biortech.2010.01.125

Hend A. Alwathnani. (2012). Evaluation of biological control potential of locally isolated antagonist fungi against Fusarium oxysporum under in vitro and pot conditions. African Journal of Microbiology Research, 6(2). https://doi.org/10.5897/AJMR11.1367

Kantachote, D., Prachyakij, P., Charernjiratrakul, W., Ongsakul, M., Duangjitcharoen, Y., Chaiyasut, C., … Kanzaki, H. (2010). Characterization of the antiyeast compound and probiotic properties of a starter Lactobacillus plantarum DW3 for possible use in fermented plant beverages. Electronic Journal of Biotechnology, 13(5). https://doi.org/10.2225/vol13-issue5-fulltext-1

Kijjoa, A., Lima, R., Vasconcelos, M., Pinto, M., Almeida, A., Dethoup, T., & Singburaudom, N. (2010). The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites. Journal of Natural Pharmaceuticals, 1(1), 25. https://doi.org/10.4103/2229-5119.73583

Liu, J., Luo, J., Ye, H., Sun, Y., Lu, Z., & Zeng, X. (2009). Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 78(2), 275–281. https://doi.org/10.1016/j.carbpol.2009.03.046

Maloney, K. N., MacMillan, J. B., Kauffman, C. A., Jensen, P. R., Dipasquale, A. G., Rheingold, A. L., & Fenical, W. (2009). Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Organic Letters, 11(23), 5422–5424. https://doi.org/10.1021/ol901997k

Mayer, A. M. S., & Hamann, M. T. (2002). Marine pharmacology in 1999: Compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other misc. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology. https://doi.org/10.1016/S1532-0456(02)00094-7

Ohba, M., Mizuki, E., & Uemori, A. (2009). Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Research, 29(1), 427–433.

Phonnok, S., Tanechpongtamb, W. U., & Wongsatayanon, B. T. (2010). Anticancer and apoptosis-inducing activities of microbial metabolites. Electronic Journal of Biotechnology, 13(5). https://doi.org/10.2225/vol13-issue5-fulltext-7

Richards, T. A., Jones, M. D. M., Leonard, G., & Bass, D. (2012). Marine Fungi: Their Ecology and Molecular Diversity. Annual Review of Marine Science, 4(1), 495–522. https://doi.org/10.1146/annurev-marine-120710-100802

Rodrigues, K. F., Costa, G. L., Carvalho, M. P., & Epifanio, R. D. A. (2005). Evaluation of extracts produced by some tropical fungi as potential cholinesterase inhibitors. World Journal of Microbiology and Biotechnology, 21(8–9), 1617–1621. https://doi.org/10.1007/s11274-005-8344-5

Romanenko, L. A., Uchino, M., Kalinovskaya, N. I., & Mikhailov, V. V. (2008). Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiological Research, 163(6), 633–644. https://doi.org/10.1016/j.micres.2006.10.001

Sadananda, T., Nirupama, R., Chaithra, K., Govindappa, M., Chandrappa, C., & Raghavendra, V. B. (2011). Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J Med Plants …, 1(16), 12–13. Retrieved from http://www.researchgate.net/publication/235767096_Antimicrobial_and_antioxidant_activities_of_endophytesfrom_Tabebuia_argentea_and_identification_of_anticanceragent_(lapachol)/file/79e415135be2737f03.pdf

Sivonen, K., Leikoski, N., Fewer, D. P., & Jokela, J. (2010). Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-010-2482-x

Soltani, S., Saadatmand, S., Khavarinejad, R., & Nejadsattari, T. (2011). Antioxidant and antibacterial activities of Cladophora glomerata ( L .) Kütz . in Caspian Sea Coast , Iran. Journal of Biotechnology, 10(39), 7684–7689. https://doi.org/10.5897/AJB11.491

Song, Y. C., Huang, W. Y., Sun, C., Wang, F. W., & Tan, R. X. (2005). Characterization of graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biological & Pharmaceutical Bulletin, 28(3), 506–9. https://doi.org/Doi 10.1248/Bpb.28.506

Srinivasan, K. ., Jagadish, L. K. K. ., Shenbahgaaraman, R. ., Muthumary, J., Srinivisan, K., Jagadish, L. K. K. ., … Muthumary, J. (2010). Antioxidant activity of endophytic fungus Phyllosticta sp. isolated from Gauzuma tomentosa. Journal of Phytology, 2(6), 37–41.

Sun, H. H., Mao, W. J., Chen, Y., Guo, S. D., Li, H. Y., Qi, X. H., … Xu, J. (2009). Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers, 78(1), 117–124. https://doi.org/10.1016/j.carbpol.2009.04.017

Taira, C. L., Marcondes, N. R., Mota, V. A., & Svidzinski, T. I. E. (2011). Virulence potential of filamentous fungi isolated from poultry barns in Cascavel, Paran??, Brazil. Brazilian Journal of Pharmaceutical Sciences, 47(1), 155–160. https://doi.org/10.1590/S1984-82502011000100019

Thakur, A. N., Thakur, N. L., Indap, M. M., Pandit, R. A., Datar, V. V., & Müller, W. E. G. (2005). Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Marine Biotechnology, 7(3), 245–252. https://doi.org/10.1007/s10126-004-4085-y

Thenmozhi, M., Sindhura, S., & Kannabiran, K. (2010). Characterization of Antioxidant activity of Streptomyces species VITTK3 isolated from Puducherry Coast, India. Journal of Advanced Scientific Research, 1(2), 46–52. https://doi.org/10.6088/ijaser.05012

Thomas, T. R. A., Kavlekar, D. P., & LokaBharathi, P. A. (2010). Marine drugs from sponge-microbe association - A review. Marine Drugs. https://doi.org/10.3390/md8041417

V. Vasanthabharathi. (2012). Bioactive potential of symbiotic bacteria and fungi from marine sponges. African Journal of Biotechnology, 11(29), 7500–7511. https://doi.org/10.5897/AJB11.1378

Vijayabaskar, P., & Shiyamala, V. (2012). Antioxidant properties of seaweed polyphenol from Turbinaria ornata (Turner) J. Agardh, 1848. Asian Pacific Journal of Tropical Biomedicine, 2(1 SUPPL.). https://doi.org/10.1016/S2221-1691(12)60136-1

Xiaoling, C., Xiaoli, L., Shining, Z., Junping, G., Shuiping, W., Xiaoming, L., … Yongcheng, L. (2010). Cytotoxic and topoisomerase I inhibitory activities from extracts of endophytic fungi isolated from mangrove plants in Zhuhai, China. Journal of Ecology and The Natural Environment, 2(2), 17–24. Retrieved from http://academicjournals.org/jene/PDF/Pdf2010/Feb/Xiaoling et al.pdf

Yoghiapiscessa, D., Batubara, I., & Wahyudi, A. T. (2016). Antimicrobial and antioxidant activities of bacterial extracts from marine bacteria associated with sponge Stylotella sp. American Journal of Biochemistry and Biotechnology, 12(1), 36–46. https://doi.org/10.3844/ajbbsp.2016.36.46

 

Committee on Publication Ethics

Buy PDF
Supplementary Material
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
1010
View
0
Share