References
Abdullah, M. S., Islam, M. J., Hasan, M. M., Sarkar, D., Rana, M. S., Das, S. S., & Hossian, M. (2024). Impact of waste management on infectious disease control: Evaluating strategies to mitigate dengue transmission and mosquito breeding sites – A systematic review. Journal of Angiotherapy, 8(8), 1–12. https://doi.org/10.25163/angiotherapy.889850
Agrawal, K. K., Panda, C., & Bhuyan, M. K. (2021). Impact of urbanization on water quality. In S. K. Acharya & D. P. Mishra (Eds.), Current advances in mechanical engineering (pp. 665–673). Springer. https://doi.org/10.1007/978-981-33-4795-3_60
Ahmed, M., Mumtaz, R., & Anwar, Z. (2022). An enhanced water quality index for water quality monitoring using remote sensing and machine learning. Applied Sciences, 12(24), Article 24. https://doi.org/10.3390/app122412787
Ahmed, U., Mumtaz, R., Anwar, H., Shah, A. A., Irfan, R., & García-Nieto, J. (2019). Efficient water quality prediction using supervised machine learning. Water, 11(11), 2210. https://doi.org/10.3390/w11112210
Albert, J., & Rizzo, M. (2012). Exploratory data analysis. In J. Albert & M. Rizzo (Eds.), R by example: Concepts to code (pp. 133–151). Springer. https://doi.org/10.1007/978-1-4614-1365-3_5
Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H., & Sayyahi, F. (2018). Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (Case study: Gorganrood River). KSCE Journal of Civil Engineering, 22(7), 2206–2213. https://doi.org/10.1007/s12205-017-1703-6
Brown, R. M., McClelland, N. I., Deininger, R. A., & O’Connor, M. F. (1972). A water quality index—Crashing the psychological barrier. In W. A. Thomas (Ed.), Indicators of environmental quality (pp. 173–182). Springer US. https://doi.org/10.1007/978-1-4684-2856-8_15
Bui, D. T., Khosravi, K., Tiefenbacher, J., Nguyen, H., & Kazakis, N. (2020). Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of The Total Environment, 721, 137612. https://doi.org/10.1016/j.scitotenv.2020.137612
Chen, S. S., Kimirei, I. A., Yu, C., Shen, Q., & Gao, Q. (2022). Assessment of urban river water pollution with urbanization in East Africa. Environmental Science and Pollution Research, 29(27), 40812–40825. https://doi.org/10.1007/s11356-021-18082-1
Hou, R., Lo, J. Y., Marks, J. R., Hwang, E. S., & Grimm, L. J. (2023). Classification performance bias between training and test sets in a limited mammography dataset (p. 2023.02.15.23285985). medRxiv. https://doi.org/10.1101/2023.02.15.23285985
Islam, M. J. (2024). A study on seasonal variations in water quality parameters of Dhaka rivers. Iranica Journal of Energy and Environment, 15(1), Article 1. https://doi.org/10.5829/IJEE.2024.15.01.09
Islam, Md. J., Abdullah, M. S., & Alam, M. (2024). Flooding crisis in Bangladesh: Urgent measures required. Biodiversity, 25(2), 95–98. https://doi.org/10.1080/14888386.2024.2330385
Juwana, I., Muttil, N., & Perera, B. J. C. (2016). Uncertainty and sensitivity analysis of West Java Water Sustainability Index – A case study on Citarum catchment in Indonesia. Ecological Indicators, 61, 170–178. https://doi.org/10.1016/j.ecolind.2015.08.034
Khan, I., Zakwan, M., & Mohanty, B. (2022). Water quality assessment for sustainable environmental management. ECS Transactions, 107(1), 10133. https://doi.org/10.1149/10701.10133ecst
Khoi, D. N., Quan, N. T., Linh, D. Q., Nhi, P. T. T., & Thuy, N. T. D. (2022). Using machine learning models for predicting the water quality index in the La Buong River, Vietnam. Water, 14(10), 1552. https://doi.org/10.3390/w14101552
Kiliç, Z. (2020). The importance of water and conscious use of water. International Journal of Hydrology. https://doi.org/10.15406/ijh.2020.04.00250
Lamrini, M., Quevy, Q. A., Yassin Chkouri, M., & Touhafi, A. (2022). Data integrity analysis of water quality sensors and water quality assessment. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 1–6. https://doi.org/10.1109/IECON49645.2022.9968643
Lap, B. Q., Phan, T.-T.-H., Nguyen, H. D., Quang, L. X., Hang, P. T., Phi, N. Q., Hoang, V. T., Linh, P. G., & Hang, B. T. T. (2023). Predicting water quality index (WQI) by feature selection and machine learning: A case study of An Kim Hai irrigation system. Ecological Informatics, 74, 101991. https://doi.org/10.1016/j.ecoinf.2023.101991
Lee, S. (2021). Water quality management. In S. Lee (Ed.), China’s water resources management: A long march to sustainability (pp. 191–228). Springer International Publishing. https://doi.org/10.1007/978-3-030-78779-0_6
Li, X., Ding, J., & Ilyas, N. (2021). Machine learning method for quick identification of water quality index (WQI) based on Sentinel-2 MSI data: Ebinur Lake case study. Water Supply, 21(3), 1291–1312. https://doi.org/10.2166/ws.2020.381
Ling, Q. (2023). Machine learning algorithms review. Applied and Computational Engineering, ACE, 4, 91–98. https://doi.org/10.54254/2755-2721/4/20230355
Mim, F. I., Islam, Md. J., & Abdullah, M. S. (n.d.). Plastic tsunami: Bangladesh’s maritime ecosystem under siege. Environmental Forensics, 0(0), 1–3. https://doi.org/10.1080/15275922.2024.2330026
Mogane, L. K., Masebe, T., Msagati, T. A. M., & Ncube, E. (2023). A comprehensive review of water quality indices for lotic and lentic ecosystems. Environmental Monitoring and Assessment, 195(8), 926. https://doi.org/10.1007/s10661-023-11512-2
Mueller, J., Varadharajan, C., Wu, Y., & Siirila-Woodburn, E. (2021). Machine learning to enable efficient uncertainty quantification, data assimilation, and informed data acquisition (AI4ESP1097). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). https://doi.org/10.2172/1769743
Oreški, D., Pihir, I., & Višnjiu, D. (2023). Comparative analysis of machine learning algorithms on data sets of different characteristics for digital transformation. 2023 46th MIPRO ICT and Electronics Convention (MIPRO), 1428–1433. https://doi.org/10.23919/MIPRO57284.2023.10159910
Rahman, H., Easha, A. A., Fatema, N., Islam, Md. J., & Alam, M. (2024). Climate change adaptation strategy of the coastal indigenous community of Bangladesh. Advances in Civil Engineering, 2024(1), 5395870. https://doi.org/10.1155/2024/5395870
Ren, Z., & Du, C. (2023). A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries. Energy Reports, 9, 2993–3021. https://doi.org/10.1016/j.egyr.2023.01.108
Rezaie-Balf, M., Attar, N. F., Mohammadzadeh, A., Murti, M. A., Ahmed, A. N., Fai, C. M., Nabipour, N., Alaghmand, S., & El-Shafie, A. (2020). Physicochemical parameters data assimilation for efficient improvement of water quality index prediction: Comparative assessment of a noise suppression hybridization approach. Journal of Cleaner Production, 271, 122576. https://doi.org/10.1016/j.jclepro.2020.122576
Schweitzer, R. W., Harvey, B., & Burt, M. (2020). Using innovative smart water management technologies to monitor water provision to refugees. Water International, 45(6), 651–659. https://doi.org/10.1080/02508060.2020.1786309
Shadabi, L., & Ward, F. A. (2022). Predictors of access to safe drinking water: Policy implications. Water Policy, 24(6), 1034–1060. https://doi.org/10.2166/wp.2022.037
Sillberg, C., Kullavanijaya, P., & Chavalparit, O. (2021). Water quality classification by integration of attribute-realization and support vector machine for the Chao Phraya River. Journal of Ecological Engineering, 22(9), 70–86. https://doi.org/10.12911/22998993/141364
Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2015). Development of river water quality indices—A review. Environmental Monitoring and Assessment, 188(1), 58. https://doi.org/10.1007/s10661-015-5050-0
Tabassum, S., Kotnala, C. B., Masih, R. K., Shuaib, M., Alam, S., & Alar, T. M. (2023). Performance analysis of machine learning techniques for predicting water quality index using physiochemical parameters. 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 372–377. https://doi.org/10.1109/ICSCSS57650.2023.10169408
To, T. C. (2020). Water quality assessment of Saigon River for public water supply based on water quality index. Vietnam Journal of Science and Technology, 58(5A), 85. https://doi.org/10.15625/2525-2518/58/5A/15203
Uddin, M. G., Nash, S., Mahammad Diganta, M. T., Rahman, A., & Olbert, A. I. (2022). Robust machine learning algorithms for predicting coastal water quality index. Journal of Environmental Management, 321, 115923. https://doi.org/10.1016/j.jenvman.2022.115923
Uddin, Md. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. https://doi.org/10.1016/j.ecolind.2020.107218
Wang, L., Zhu, Z., Sassoubre, L., Yu, G., Liao, C., Hu, Q., & Wang, Y. (2021). Improving the robustness of beach water quality modeling using an ensemble machine learning approach. Science of The Total Environment, 765, 142760. https://doi.org/10.1016/j.scitotenv.2020.142760
Yilma, M., Kiflie, Z., Windsperger, A., & Gessese, N. (2018). Application of artificial neural network in water quality index prediction: A case study in Little Akaki River, Addis Ababa, Ethiopia. Modeling Earth Systems and Environment, 4(1), 175–187. https://doi.org/10.1007/s40808-018-0437-x
Zhai, C., Sui, Y., & Wu, W. (2023). Machine learning-assisted correlations of heat/mass transfer and pressure drop of microchannel membrane-based desorber/absorber for compact absorption cycles. International Journal of Heat and Mass Transfer, 214, 124431. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124431
Zhang, Y., Gao, X., Smith, K., Inial, G., Liu, S., Conil, L. B., & Pan, B. (2019). Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 164, 114888. https://doi.org/10.1016/j.watres.2019.114888