References
Abdoh, A. A., Zughul, M. B., Davies, J. E. D., & Badwan, A. A. (2007). Inclusion complexation of diclofenac with natural and modified cyclodextrins explored through phase solubility, 1H-NMR and molecular modeling studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57(1–4), 503–510. https://doi.org/10.1007/s10847-006-9241-8
Bouchemal, K., & Mazzaferro, S. (2012). How to conduct and interpret ITC experiments accurately for cyclodextrin-guest interactions. Drug Discovery Today, 17(11–12), 623–629. https://doi.org/10.1016/j.drudis.2012.01.023
Brewster, M. E., & Loftsson, T. (2007). Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews, 59(7), 645–666. https://doi.org/10.1016/j.addr.2007.05.012
Carrier, R. L., Miller, L. A., & Ahmed, I. (2007). The utility of cyclodextrins for enhancing oral bioavailability. Journal of Controlled Release, 123(2), 78–99. https://doi.org/10.1016/j.jconrel.2007.07.018
Cid-Samamed, A., Rakmai, J., Mejuto, J. C., Simal-Gandara, J., & Astray, G. (2022). Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry, 384, Article 132467. https://doi.org/10.1016/j.foodchem.2022.132467
Conceição, J., Adeoye, O., Cabral-Marques, H. M., & Lobo, J. M. S. (2018). Cyclodextrins as excipients in tablet formulations. Drug Discovery Today, 23(7), 1274–1284. https://doi.org/10.1016/j.drudis.2018.04.009
Connors, T., & Higuchi, K. A. (1965). Phase solubility techniques. Advanced Analytical Chemistry of Instrumentation, 4, 117–112.
Das, S., & Subuddhi, U. (2015). Studies on the complexation of diclofenac sodium with β-cyclodextrin: Influence of method of preparation. Journal of Molecular Structure, 1099, 482–489. https://doi.org/10.1016/j.molstruc.2015.07.001
Davis, M. E., & Brewster, M. E. (2004). Cyclodextrin-based pharmaceutics: Past, present and future. Nature Reviews Drug Discovery, 3(12), 1023–1035. https://doi.org/10.1038/nrd1576
Duchêne, D., & Bochot, A. (2016). Thirty years with cyclodextrins. International Journal of Pharmaceutics, 514(1), 58–72. https://doi.org/10.1016/j.ijpharm.2016.07.030
Eid, E. E. M., Almaiman, A. A., Alshehade, S. A., Alsalemi, W., Kamran, S., & Suliman, F. E. O., Alshawsh, M. A. (2023). Characterization of Thymoquinone-Sulfobutylether-β-Cyclodextrin Inclusion Complex for Anticancer Applications. Molecules, 28(10), Article 4096. https://doi.org/10.3390/molecules28104096
European Medicines Agency. (2014). Background review for cyclodextrins used as excipients. European Medicines Agency. https://www.ema.europa.eu/contact
Huang, J., Yang, Q., & Pu, H. (n.d.). 4. Cyclodextrins: Applications in industry. Shaanxi University of Science and Technology, Weiyang District, Xi’an, Shaanxi, China.
Jambhekar, S. S., & Breen, P. (2016). Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discovery Today, 21(2), 363–368. https://doi.org/10.1016/j.drudis.2015.11.016
Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. International Journal of Pharmaceutics, 453(1), 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
Loftsson, T., Jarho, P., Másson, M., & Järvinen, T. (2005). Cyclodextrins in drug delivery. Expert Opinion on Drug Delivery, 2(2), 335–351. https://doi.org/10.1517/17425247.2.1.335
Mora, M. J., Longhi, M. R., & Granero, G. E. (2010). Synthesis and characterization of binary and ternary complexes of diclofenac with a methyl-β-CD and monoethanolamine and in vitro transdermal evaluation. European Journal of Medicinal Chemistry, 45(10), 4079–4088. https://doi.org/10.1016/j.ejmech.2010.05.068
Mura, P. (2014). Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: A review. Journal of Pharmaceutical and Biomedical Analysis, 101, 238–250. https://doi.org/10.1016/j.jpba.2014.02.022
Mura, P. (2015). Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. Journal of Pharmaceutical and Biomedical Analysis, 113, 226–238. https://doi.org/10.1016/j.jpba.2015.01.058
Nugrahani, I., Utami, D., Ibrahim, S., Nugraha, Y. P., & Uekusa, H. (2018). Zwitterionic cocrystal of diclofenac and L-proline: Structure determination, solubility, kinetics of cocrystallization, and stability study. European Journal of Pharmaceutical Sciences, 117, 168–176. https://doi.org/10.1016/j.ejps.2018.02.020
Pardeshi, C. V., Kothawade, R. V., Markad, A. R., Pardeshi, S. R., Kulkarni, A. D., Chaudhari, P. J., Longhi, M. R., Dhas, N., Naik, J. B., Surana, S. J., & García, M. C. (2023). Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydrate Polymers, 301, Article 120347. https://doi.org/10.1016/j.carbpol.2022.120347
Periasamy, R. (2020). A systematic review on the significant roles of cyclodextrins in the construction of supramolecular systems and their potential usage in various fields. Journal of Carbohydrate Chemistry, 39(4), 189–216. https://doi.org/10.1080/07328303.2020.1792919
Ribeiro, A., Figueiras, A., Santos, D., & Veiga, F. (2008). Preparation and solid-state characterization of inclusion complexes formed between miconazole and methyl-β-cyclodextrin. AAPS PharmSciTech, 9(4), 1102–1109. https://doi.org/10.1208/s12249-008-9143-8
Scholer, D. W., Ku, E. C., Boettcher, I., & Schweizer, A. (n.d.). Pharmacology of diclofenac sodium.
Tian, B., Xiao, D., Hei, T., Ping, R., Hua, S., & Liu, J. (2020). The application and prospects of cyclodextrin inclusion complexes and polymers in the food industry: A review. Polymer International, 69(6), 597–603. https://doi.org/10.1002/pi.5992