References
Bastiancich, C., Bianco, J., Vanvarenberg, K., Ucakar, B., Joudiou, N., Gallez, B., Bastiat, G., Préat, V., & Danhier, F. (2017). Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. Journal of Controlled Release, 264, 45–54. https://doi.org/10.1016/j.jconrel.2017.08.019
Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951. https://doi.org/10.1038/nbt.3330
Caramella, C.M., Rossi, S., Ferrari, F., Bonferoni, M.C., & Sandri, G. (2015). Mucoadhesive and thermogelling systems for vaginal drug delivery. Advanced Drug Delivery Reviews, 92, 39–52. https://doi.org/10.1016/j.addr.2015.02.001
Cully, M. (2015). Inflammatory diseases: Hydrogel drug delivery for inflammatory bowel disease. Nature Reviews Drug Discovery, 14(10), 678. https://doi.org/10.1038/nrd4744
Duan, Z., Zhu, M., Wang, Y., Xu, L., & Jiang, Y. (2018). The effect of particle size on the cellular uptake and in vivo distribution of nanocarriers. Journal of Nanobiotechnology, 16(1), 129. https://doi.org/10.1186/s12951-018-0477-1
Feng, Q., & Zhao, Y. (2019). The influence of pH and ionic strength on the stability of nanoparticles: The role of environmental conditions. Nanotechnology Reviews, 8(1), 1067–1084. https://doi.org/10.1515/ntrev-2019-0050
Fu, Y., & Kao, W.J. (2011). In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition. Journal of Biomedical Materials Research Part A, 98(2), 201–211. https://doi.org/10.1002/jbm.a.33106
Gazaille, C., Sicot, M., Akiki, M., Lautram, N., Dupont, A., Saulnier, P., Eyer, J., & Bastiat, G. (2021). Characterization of biological material adsorption to the surface of nanoparticles without a prior separation step: A case study of glioblastoma-targeting peptide and lipid nanocapsules. Pharmaceutical Research, 38(5), 681–691. https://doi.org/10.1007/s11095-021-03034-8
Gerwin, N., Hops, C., & Lucke, A. (2006). Intraarticular drug delivery in osteoarthritis. Advanced Drug Delivery Reviews, 58(2), 226–242. https://doi.org/10.1016/j.addr.2006.01.018
Heurtault, B., Saulnier, P., Pech, B., Proust, J.E., & Benoit, J.P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharmaceutical Research, 19(6), 875–880. https://doi.org/10.1023/A:1016121319668
Kang-Mieler, J.J., & Mieler, W.F. (2015). Thermo-responsive hydrogels for ocular drug delivery. Developments in Ophthalmology, 55, 104–111. https://doi.org/10.1159/000434694
Karavasili, C., & Fatouros, D.G. (2016). Smart materials: In situ gel-forming systems for nasal delivery. Drug Discovery Today, 21(1), 157–166. https://doi.org/10.1016/j.drudis.2015.10.016
Karvinen, J., Ihalainen, T.O., Calejo, M.T., Jönkkäri, I., & Kellomäki, M. (2019). Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies. Materials Science and Engineering C, 94, 1056–1066. https://doi.org/10.1016/j.msec.2018.10.048
Lee, J.H., Nam, Y.S., & Lee, K.S. (2017). Thermo-responsive hydrogels for controlled drug release and their applications in cancer therapy. Journal of Biomedical Materials Research Part A, 105(5), 1253–1261. https://doi.org/10.1002/jbm.a.35960
Loren, N., Hagman, J.K., Jonasson, J., Deschout, H., Bernin, D., Cella-Zanacchi, F., Diaspro, A., McNally, J.G., & Ameloot, M. (2015). Fluorescence recovery after photobleaching in material and life sciences: Putting theory into practice. Quarterly Reviews of Biophysics, 48(4), 323–387. https://doi.org/10.1017/S0033583515000013
Lorén, N., Hagman, J.K., Jonasson, J., Deschout, H., Bernin, D., Cella-Zanacchi, F., Diaspro, A., McNally, J.G., & Ameloot, M. (2015). Fluorescence recovery after photobleaching in material and life sciences: Putting theory into practice. Quarterly Reviews of Biophysics, 48(4), 323–387. https://doi.org/10.1017/S0033583515000013
Martinez-Jothar, L., Doulkeridou, S., Schiffelers, R.M., Sastre Torano, S., Oliveira, S., van Nostrum, C.F., & Hennink, W.E. (2018). Insights into maleimide-thiol conjugation chemistry: Conditions for efficient surface functionalization of nanoparticles for receptor targeting. Journal of Controlled Release, 282, 101–109. https://doi.org/10.1016/j.jconrel.2018.03.002
Miller, M.A., & Nelson, D.J. (2020). Biodegradable and bioadhesive hydrogels for controlled release of bioactive compounds. Journal of Controlled Release, 328, 329–343. https://doi.org/10.1016/j.jconrel.2020.09.029
Perrier, T., Saulnier, P., Fouchet, F., Lautram, N., & Benoît, J.P. (2010). Post-insertion into Lipid NanoCapsules (LNCs): From experimental aspects to mechanisms. International Journal of Pharmaceutics, 396(1–2), 204–209. https://doi.org/10.1016/j.ijpharm.2010.06.019
Petros, R.A., & Desimone, J.M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615–627. https://doi.org/10.1038/nrd2591
Pitorre, M., Gazaille, C., Pham, L.T.T., Frankova, K., Béjaud, J., Lautram, N., Riou, J., Perrot, R., Geneviève, F., & Moal, V. (2021). Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform. Materials Science and Engineering C, 126, 112188. https://doi.org/10.1016/j.msec.2021.112188
Rupp, R., Rosenthal, S.L., & Stanberry, L.R. (2007). VivaGel™ (SPL7013 Gel): A candidate dendrimer-microbicide for the prevention of HIV and HSV infection. International Journal of Nanomedicine, 2(4), 561–566. https://doi.org/10.2147/IJN.S1232
Shen, M., Xu, Y.Y., Sun, Y., Duan, Y.R., & Han, B.S. (2015). Preparation of a thermosensitive gel composed of a mPEG-PLGA-PLL-cRGD nanodrug delivery system for pancreatic tumor therapy. ACS Applied Materials & Interfaces, 7(35), 20530–20537. https://doi.org/10.1021/acsami.5b06043
Shi, J., Farokhzad, O.C., Votruba, A.R., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 10(10), 3223–3230. https://doi.org/10.1021/nl102184c
Shi, J., Kantoff, P.W., Wooster, R., & Farokhzad, O.C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20–37. https://doi.org/10.1038/nrc.2016.108
Summonte, S., Racaniello, G.F., Lopedota, A., Denora, N., & Bernkop-Schnürch, A. (2021). Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. Journal of Controlled Release, 330, 470–482. https://doi.org/10.1016/j.jconrel.2020.12.037
Wong, R.S.H., Ashton, M., & Dodou, K. (2015). Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics, 7(3), 305–319. https://doi.org/10.3390/pharmaceutics7030305
Wu, Z.X., Zou, X.Y., Yang, L.L., Lin, S., Fan, J., Yang, B., Sun, X.Y., Wan, Q., Chen, Y., & Fu, S.Z. (2014). Thermosensitive hydrogel used in dual drug delivery system with paclitaxel-loaded micelles for in situ treatment of lung cancer. Colloids and Surfaces B: Biointerfaces, 122, 90–98. https://doi.org/10.1016/j.colsurfb.2014.06.052
Zhou, Y., Li, Z., Zhang, Y., & Wang, H. (2021). A review of drug delivery systems for hydrophobic drugs: Nanocarriers and their applications. Journal of Nanobiotechnology, 19(1), 160. https://doi.org/10.1186/s12951-021-01092-8