Agriculture and food sciences
REVIEWS   (Open Access)

Adoption of IoT in Agriculture - Systematic Review

Syed Mosaddik Hossain Ifty 1, Bayazid Hossain 3, Md Rahatul Ashakin 2, Mazharul Islam Tusher 4, Rashedul Haque Shadhin 5, Jahedul Hoque 6, Redoyan Chowdhury 7*, Atiqur Rahman Sunny 8*

+ Author Affiliations

Applied Agriculture Sciences 1 (1) 1-10 https://doi.org/10.25163/agriculture.9676

Submitted: 09 January 2023 Revised: 18 February 2023  Published: 19 February 2023 


Abstract

This study aimed to elucidate the diverse applications and concrete advantages of incorporating IoT technology into the agricultural sector of the United States. This paper highlights the potential of IoT to address difficulties and create possibilities for resilience and sustainable advancement in agriculture. It does so by examining numerous case studies across different aspects of agricultural production. Recent findings indicate that the United States has significant potential for the use of Internet of Things (IoT) technology in agriculture. This has the potential to completely transform farming methods and enhance productivity, sustainability, and profitability. Utilising IoT technology in precision agriculture enables specific methods for irrigation, fertilisation, and insect control, resulting in increased crop production and decreased environmental impact. Nevertheless, there are significant obstacles that continue to exist, such as the upfront investment required for IoT infrastructure, apprehensions about the confidentiality and security of data, challenges related to compatibility, and the widespread lack of access to digital technology in rural regions. To tackle these problems, it is essential for stakeholders to work together, which involves providing financial support, establishing legislative frameworks, offering expert technical guidance and education, and improving accessibility to infrastructure. By taking coordinated and determined steps, the agriculture industry may overcome these challenges, thereby harnessing the complete capabilities of IoT technology to promote sustainable development and adaptability.

Keywords: IoT; Smart Agriculture; Smart Aquaculture; Weather; United States of America

References


Alam, K., Jahan, N., Chowdhury, R., Mia, M.T., Saleheen, S., Hossain, N.M & Sazzad, S.A. (2023a). Impact of Brand Reputation on Initial Perceptions of Consumers. Pathfinder of Research, 1 (1), 1-10.

Alam, K., Jahan, N., Chowdhury, R., Mia, M.T., Saleheen, S., Sazzad, S.A. Hossain, N.M & Mithun, M.H. (2023b). Influence of Product Design on Consumer Purchase Decisions. Pathfinder of Research, 1 (1), 23-36

Ampatzidis, Y., De Bellis, L., & Luvisi, A. (2017). iPathology: Robotic applications and management of plants and plant diseases. Sustainability, 9(6), 1010. Multidisciplinary Digital Publishing Institute.

Arshad, J., Abdellatif, M. M., Khan, M. M., & Azad, M. A. (2018). A novel framework for collaborative intrusion detection for m2m networks. In 2018 9th international conference on information and communication systems (ICICS), pp. 12–17. IEEE.

Balleda, K., Satyanvesh, D., Sampath, N. V. S. S. P., Varma, K. T. N., & Baruah, P. K. (2014, January). Agpest: An efficient rule-based expert system to prevent pest diseases of rice & wheat crops. Paper presented at the 8th International Conference on Intelligent Systems and Control, Coimbatore, India.

Bari, K. F., Salam, M. T., Hasan, S. E., & Sunny, A. R. (2023). Serum zinc and calcium level in patients with psoriasis. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 2(3), 7-14.

Bendig, J. (2015). Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling: A new method for plant height and biomass estimation based on RGB-imaging. Applied Soft Computing Journal.

Carolan, M. (2020). Automated agrifood futures: Robotics, labor, and the distributive politics of digital agriculture. The Journal of Peasant Studies, 47(1), 184-207. https://doi.org/10.1080/03066150.2019.1584189

Carrasquilla-Batista, A., Chacón-Rodríguez, A., & Solórzano-Quintana, M. (2016). Using IoT resources to enhance the accuracy of overdrain measurements in greenhouse horticulture. In Central American and panama convention (CONCAPAN XXXVI), pp. 1–5. IEEE.

Chakma, S., Paul, A.K., Rahman, M.A., Hasan, M.M., Sazzad, S.A. & Sunny, A.R. (2022). Climate Change Impacts and Ongoing Adaptation Measures in the Bangladesh Sundarbans. Egyptian Journal of Aquatic Biology and Fisheries. 1;26(2):329-48.

Chen, K. T., Zhang, H. H., Wu, T. T., Hu, J., Zhai, C. Y., & Wang, D. (2014). Design of monitoring system for multilayer soil temperature and moisture based on WSN. In 2014 International Conference on Wireless Communication and Sensor Network (WCSN), pp. 425–430. IEEE.

Chiu, M. C., Yan, W. M., Bhat, S. A., & Huang, N. F. (2022). Development of smart aquaculture farm management system using IoT and AI-based surrogate models. journal of Agriculture and Food Research, 9, 100357.

Council for Agricultural Science and Technology (CAST). (2020). Ground and aerial robots for agricultural production: Opportunities and challenges. Issue Paper 70. CAST, Ames, Iowa.

Cukier, K. and Mayer-Schoenberger, V. (2013), “The rise of big data: how it’s changing the way we think about the world”, Foreign Affairs, Vol. 92, p. 28.

Dang, K., Sun, H., Chanet, J. P., Garcia-Vidal, J., Barcelo-Ordinas, J., Shi, H., & Hou, K. M. (2013). Wireless multimedia sensor network for plant disease detections. In: NICST’2103 new information communication science and technology for sustainable development: France-China international workshop, pp. 6–p.

Das, A. K., Friskop, A., Flores, P., Cannayen, I., Jose, J., Mathew, Z., & Zhang, Z. (2021). 2021 ASABE annual international virtual meeting [Conference session]. ASABE. https://doi.org/10.13031/aim.202100146

Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep learning approach for internet of things. Future Generation Computer Systems, 82, 761–768. Elsevier.

Fue, K. G., Porter, W. M., Barnes, E. M., & Rains, G. C. (2020). An extensive review of mobile agricultural robotics for field operations: Focus on cotton harvesting. AgriEngineering, 2(1), 150-174. https://doi.org/10.3390/agriengineering2010010

Grimblatt, V., Jégo, C., Ferré, G., & Rivet, F. (2021). How to feed a growing population—An IoT approach to crop health and growth. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 11(3), 435-448. https://doi.org/10.1109/JETCAS.2021.3099778

Guerra, M. (2017), “Three ways the IoT is revolutionizing agriculture”, available at: www.electronicdesign.com/analog/ 3-ways-iot-revolutionizes-farming (accessed 9 January 2018).USDA ERS. (n.d.). Ag and food sectors and the economy. Retrieved from [https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/ag-and-food-sectors-and-the-economy/]

Guo, W., Carroll, M. E., Singh, A., Swetnam, T. L., Merchant, N., Sarkar, S., Singh, A. K., & Ganapathysubramanian, B. (2021). UAS-based plant phenotyping for research and breeding applications. Plant Phenomics, 2021, Article 9840192. https://doi.org/10.34133/2021/9840192

Havstad, K., Brown, J., Estell, R., Elias, E., Rango, A., & Steele, C. (2018). Vulnerabilities of southwestern us rangeland-based animal agriculture to climate change. Climatic Change, 148(3), 371–386. Springer.

Hossain Ifty, S.M., Ashakin, M.R., Hossain, B., Afrin, S., Sattar, A., Chowdhury, R., Tusher, M.I., Bhowmik, P.K., Mia, M.T., Islam, T., Tufael, M. & Sunny, A.R.  (2023). IOT-Based Smart Agriculture in Bangladesh: An Overview. Applied Agriculture Sciences, 1(1), 1-6. 9563, 10.25163/agriculture.119563

Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors, 17(8), 1781. Multidisciplinary Digital Publishing Institute.

Johnston, W.J. (2014), “The future of business and industrial marketing and needed research”, Journal of Business Market Management, Vol. 7 No. 1, pp. 296-300.

Johnston, W.J. and Pattinson, H.M. (2016), “The internet of things (IoT), big data and B2B digital business ecosystems”, National research University: Higher school of Economics, Doctoral consortium in Strategic Marketing.

Kassim, M. R. M., Mat, I., & Harun, A. N. (2014). Wireless sensor network in precision agriculture application. In 2014 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5. IEEE.

Khanal, S., KC, K., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sensing, 12(22), 3783. https://doi.org/10.3390/rs12223783

Kolhe, S., Kamal, R., Saini, H. S., & Gupta, G. K. (2011). A web-based intelligent disease-diagnosis system using a new fuzzy-logic based approach for drawing the inferences in crops. Computers and Electronics in Agriculture, 76(1), 16-27.

Kuddus, M. A., Datta, G. C., Miah, M. A., Sarker, A. K., Hamid, S. M. A., & Sunny, A. R. (2020). Performance study of selected orange fleshed sweet potato varieties in north eastern bangladesh. Int. J. Environ. Agric. Biotechnol, 5, 673-682.

Kuddus, M. A., Alam, M. J., Datta, G. C., Miah, M. A., Sarker, A. K., & Sunny, M. A. R. (2021). Climate resilience technology for year round vegetable production in northeastern Bangladesh. International Journal of Agricultural Research, Innovation and Technology (IJARIT), 11(2355-2021-1223), 29-36.

Kumar, S. A., & Ilango, P. (2018). The impact of wireless sensor network in the field of precision agriculture: A review. Wireless Personal Communications, 98(1), 685–698. Springer.

Lohr, S. (2015), “The internet of things and the future of farming”, (accessed 17 December 2017).

 Lopez, E. M., Garcia, M., Schuhmacher, M., & Domingo, J. L. (2008). A fuzzy expert system for soil characterization. Environment International, 34(7), 950-958.

Lopez-Ridaura, S., Frelat, R., Van Wijk, M. T., Valbuena, D., Krupnik, T. J., & Jat, M. (2018). Climate smart agriculture, farm household typologies and food security: An ex-ante assessment from eastern India. Agricultural Systems, 159, 57–68. Elsevier.

Luvisi, A., Ampatzidis, Y., & De Bellis, L. (2016). Plant pathology and information technology: Opportunity for management of disease outbreak and applications in regulation frameworks. Sustainability, 8(8), 831. Multidisciplinary Digital Publishing Institute.

Machina Research (2016), “Agricultural IoT will see a very rapid growth over the next 10 years”, available at: https:// machinaresearch.com/news/agricultural-iot-will-see-avery-rapid-growth-over-the-next-10-years/ (accessed 17 December 2017).

Mafuta, M., Zennaro, M., Bagula, A., Ault, G., & Chadza, T. (2013). Successful deployment of a wireless sensor network for precision agriculture in malawi–wipam. In 3rd IEEE International Conference on Networked Embedded Systems For Every Application, 9(5). SAGE Publications.

Meola, A. (2016), “Why IoT, big data & smart farming are the future of agriculture”, available at: www.businessinsider. com/internet-of-things-smart-agriculture-2016-10 (accessed 17 December 2017)

Mueller-Sim, T., Jenkins, M., Abel, J., & Kantor, G. (2017). The robotanist: A ground-based agricultural robot for high-throughput crop phenotyping. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 3634-3639. https://doi.org/10.1109/ICRA.2017.7989418

Nguyen, T. T., Hoang, T. D., Pham, M. T., Vu, T. T., Nguyen, T. H., Huynh, Q.-T., & Jo, J. (2020). Monitoring agriculture areas with satellite images and deep learning. Applied Soft Computing, 95, Article 106565. https://doi.org/10.1016/j.asoc.2020.106565

Noyes, K. (2014), “Cropping up on every farm: big data technology”, available at: http://fortune.com/2014/05/30/ cropping-up-on-every-farm-big-data-technology/ (accessed 17 December 2017).

Oksanen, T., Linkolehto, R., & Seilonen, I. (2016). Adapting an industrial automation protocol to remote monitoring of mobile agricultural machinery: a combine harvester with IoT. IFACPapersOnLine, 49(16), 127–131. Elsevier.

 Papageorgiou, E. I., Markinos, A. T., & Gemtos, T. A. (2011). Fuzzy cognitive map based approach for predicting crop production as a basis for decision support system in precision agriculture application. Applied Soft Computing, 11(4), 3643-3657.

Qu, D., Wang, X., Kang, C., & Liu, Y. (2018). Promoting agricultural and rural modernization through application of information and communication technologies in china. International Journal of Agricultural and Biological Engineering, 11(6), 1–4. ABE Publishing.

Rad, C. R., Hancu, O., Takacs, I. A., & Olteanu, G. (2015). Smart monitoring of potato crop: a cyberphysical system architecture model in the field of precision agriculture. Agriculture and Agricultural Science Procedia, 6, 73–79. Elsevier.

Ramesh, S., & Rajaram, B. (2018). Iot based crop disease identification system using optimization techniques. ARPN Journal of Engineering and Applied Sciences, 13, 1392–1395.

Ramson, S. R. J., et al. (2021). A self-powered real-time LoRaWAN IoT-based soil health monitoring system. IEEE Internet of Things Journal, 8(11), 9278-9293. https://doi.org/10.1109/JIOT.2021.3056586

Ray, B. (2017), “An in-Depth Look at IoT in agriculture & smart farming solutions”, available at: www.link-labs.com/ blog/rise-of-iot-in-agriculture (accessed 17 December 2017).

Roy, S. K., Roy, A., Misra, S., Raghuwanshi, N. S., & Obaidat, M. S. (2015). Aid: A prototype for agricultural intrusion detection using wireless sensor network. In 2015 IEEE International Conference on Communications (ICC), pp. 7059–7064. IEEE.

Sabini, M., Rusak, G., & Ross, B. (2017). Understanding satellite-imagery-based crop yield predictions. Stanford University. Retrieved from https://stanford.edu/555.pdf

Sazzad, S. A., Billah, M., Sunny, A. R., Anowar, S., Pavel, J. H., Rakhi, M. S., ... & Al-Mamun, M. A. (2023). Sketching Livelihoods and Coping Strategies of Climate Vulnerable Fishers. Egyptian Journal of Aquatic Biology & Fisheries, 27(4).

Shafi, U., et al. (2020). A multi-modal approach for crop health mapping using low altitude remote sensing, Internet of Things (IoT), and machine learning. IEEE Access, 8, 112708-112724. https://doi.org/10.1109/ACCESS.2020.3002948

Siraj, F., & Arbaiy, N. (2006, June). Integrated pest management system using fuzzy expert system. Paper presented at the Knowledge Management International Conference & Exhibition, Kuala Lumpur, Malaysia.

Sistler, F. (1987). Robotics and intelligent machines in agriculture. IEEE Journal on Robotics and Automation, 3(1), 3-6. https://doi.org/10.1109/JRA.1987.1087074

Snehal, S. S., & Sandeep, S. V. (2014). Agricultural crop yield prediction using artificial neural network approach. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2(1), 683-686.

Song, H., & He, Y. (2005, July). Crop nutrition diagnosis expert system based on artificial neural networks. Paper presented at the 3rd International Conference on Information Technology and Applications, Sydney, Australia.

Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson, A., Khan, A., Adusei, B., Stehman, S. V., & Hansen, M. C. (2017). National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sensing of Environment, 190, 383-395. https://doi.org/10.1016/j.rse.2017.01.008

Suciu, G., Vulpe, A., Fratu, O., & Suciu, V. (2015). M2M remote telemetry and cloud IoT big data processing in viticulture. In 2015 International on Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1117–1121. IEEE.

Sunny, A. R., Mithun, M. H., Prodhan, S. H., Ashrafuzzaman, M., Rahman, S. M. A., Billah, M. M., Hussain, M., Ahmed, K. J., Sazzad, S. A., Alam, M. T., Rashid, A., & Hossain, M. M. (2021). Fisheries in the context of attaining sustainable development goals (Sdgs) in bangladesh: Covid-19 impacts and future prospects. Sustainability (Switzerland), 13(17), 1–22. https://doi.org/10.3390/su13179912.

Sunny, A. R., Hassan, M. N., Mahashin, M., & Nahiduzzaman, M. (2017). Present status of hilsa shad (Tenualosa ilisha) in Bangladesh: A review. Journal of Entomology and Zoology Studies, 5(6), 2099-2105.

Tajik, S., Ayoubi, S., & Nourbakhsh, F. (2012). Prediction of soil enzymes activity by digital terrain analysis: Comparing artificial neural network and multiple linear regression models. Environmental Engineering Science, 29(8), 798-806.

Talavera, J. M., Tobón, L. E., Gómez, J. A., Culman, M. A., Aranda, J. M., Parra, D. T., Quiroz, L. A., Hoyos, A., & Garreta, L. E. (2017). Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture, 142, 283–297. Elsevier.

TongKe, F. (2013). Smart agriculture based on cloud computing and IoT. Journal of Convergence Information Technology, 8(2). Advanced Institute of Convergence IT.

Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31–48. Elsevier.

Umme, S. M., & Narasegouda, S. (2020). Agricultural IoT as a Disruptive Technology: Comparing Cases from the USA and India. In K. Das, B. S. P. Mishra, & M. Das (Eds.), The Digitalization Conundrum in India (India Studies in Business and Economics). Springer. https://doi.org/10.1007/978-981-15-6907-4_7

Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra, R., Sinha, S. N., Kapoor, A., Sudarshan, M., & Stratman, S. (2017). Farmbeats: An IoT platform for data-driven agriculture. In NSDI, pp. 515–529.

Waher, P. (2015). Learning internet of things. Packt Publishing Ltd.

Wang, X., Zhang, M., Zhu, J., Geng, S. (2006). Spectral prediction of phytophthora infestans infection on tomatoes using artificial neural network. International Journal of Remote Sensing, 29(6), 1693-1706. https://doi.org/10.1080/01431160600851801

Waterman, J., Yang, H., & Muheidat, F. (2020, December). AWS IoT and the Interconnected World–Aging in Place. In 2020 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 1126-1129). IEEE.

Yang, Y., Ren, W., Tao, B., Ji, L., Liang, L., Ruane, A. C., Fisher, J. B., Liu, J., Sama, M., Li, Z., & Tian, Q. (2020). Characterizing spatiotemporal patterns of crop phenology across North America during 2000–2016 using satellite imagery and agricultural survey data. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 156-173. https://doi.org/10.1016/j.isprsjprs.2020.10.005

Yang, X., Zhang, S., Liu, J., Gao, Q., Dong, S., & Zhou, C. (2021). Deep learning for smart fish farming: applications, opportunities and challenges. Reviews in Aquaculture, 13(1), 66-90.

Zhang, Y., Ta, N., Guo, S., Chen, Q., Zhao, L., Li, F., & Chang, Q. (2022). Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard. Remote Sensing, 14(5), 1063. https://doi.org/10.3390/rs14051063

Zhao, Z., Chow, T. L., Rees, H. W., Yang, Q., Xing, Z., & Meng, F. R. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1), 36-48.

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
471
View

Share