Health Complications of mRNA Vaccines: Spike Protein Toxicity, Nanorobotic Risks, and the Promise of Signal-Based Medicine
John A. Catanzaro 1*, Andrew Dickens 2
Journal of Precision Biosciences 4(1) 1-8 https://doi.org/10.25163/biosciences.414604
Submitted: 07 March 2022 Revised: 08 May 2022 Published: 09 May 2022
Abstract
The rapid deployment of mRNA vaccines during the COVID-19 pandemic has raised concerns regarding the safety of the viral spike protein and nanorobotic vectoring technology. Emerging evidence suggests potential long-term health risks, including cardiovascular complications such as myocarditis and thrombosis, immune dysregulation leading to autoimmune disorders, and neurological damage. The spike protein, central to both infection and vaccination, has been implicated in endothelial disruption, immune system confusion, and oncogenic pathway activation. Additionally, the use of nanobots in mRNA vaccines introduces risks such as prolonged inflammation, persistent spike protein expression, and interference with cellular signaling. This paper critically examines the interplay between these technologies and their potential adverse effects on human health. To address these challenges, Signal-Based Medicine—a novel approach focused on restoring disrupted molecular pathways—is proposed as a targeted therapeutic strategy. Personalized peptide therapies designed to counteract spike protein-induced damage and nanobot-related disturbances may offer a promising solution. By leveraging molecular precision and patient-specific treatments, Signal-Based Medicine provides a potential pathway to mitigate long-term vaccine-associated health risks, ensuring safer and more effective medical interventions in the future.
Keywords: mRNA vaccines, spike protein, nanorobotic vectoring, Signal-Based Medicine, personalized peptide therapy
References
Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., & Laenger, F. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. Nature Medicine, 26(6), 1017-1033. https://doi.org/10.1038/s41591-020-0901-1
Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2021). SARS-CoV-2 vaccines: Development, efficacy, and safety. Journal of Virus Research, 104(2), 111-115. https://doi.org/10.1016/j.virusres.2021.104536
Alafeef, M., Dighe, K., Moitra, P., & Pan, D. (2020). Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 14(12), 17028–17045. https://doi.org/10.1021/acsnano.0c06392
Arunachalam, P. S., Wimmers, F., Mok, C. K. P., Perera, R. A. P. M., & Venkatesan, S. (2020). SARS-CoV-2 infection induces a robust innate immune response that is associated with a rapid viral clearance. Nature Medicine, 26(5), 752-758. https://doi.org/10.1038/s41591-020-0865-1
Banerjee, A., Melton, C. T., & Kizilbash, S. (2020). The role of mRNA vaccines in the pandemic: An overview of risks and benefits. The Journal of Clinical Investigation, 130(8), 4182-4193. https://doi.org/10.1172/JCI139195
Becker, L. M. (2020). Public health ethics in the COVID-19 vaccine rollout. Journal of Public Health Policy, 41(4), 547-552. https://doi.org/10.1057/s41271-020-00238-2
Bibert, S., Tiberghien, P., & Herve, C. (2021). SARS-CoV-2 vaccine technology and its future implications. Vaccine Research and Development, 12(4), 601-610. https://doi.org/10.1016/j.vrev.2021.04.003
Bock, S. A., & Ortea, I. (2020). mRNA technology and its implications for COVID-19 treatment and prevention. Molecular Therapy, 28(9), 1959-1967. https://doi.org/10.1016/j.ymthe.2020.06.016
Bouhaddou, M., Saborowski, T., & Combes, R. (2020). SARS-CoV-2 and its role in the immune system’s dysfunction. Cell Host & Microbe, 28(1), 22-32. https://doi.org/10.1016/j.chom.2020.06.004
Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., & Beskid, T. R. (2020). Assay techniques and test development for COVID-19 diagnosis. ACS Central Scince, 6(5), 591–605. https://doi.org/10.1021/acscentsci.0c00501
Combes, R. D., Purnell, S., & Reeve, A. (2021). Investigating the effects of SARS-CoV-2 and its spike protein on immune responses. Frontiers in Immunology, 12(3), 767-773. https://doi.org/10.3389/fimmu.2021.636233
Comer, D. M., Fitzgerald, R. B., & Coperchini, F. (2021). The role of inflammatory pathways in COVID-19 pathogenesis. Immunology Reviews, 302(1), 25-38. https://doi.org/10.1111/imr.12816
Coperchini, F., Chiovato, L., & Magri, F. (2021). COVID-19 vaccines and the spike protein. Endocrine Reviews, 42(5), 514-526. https://doi.org/10.1210/endrev/bnab006
Fontanet, A., Autran, B., Lina, B., Kieny, M. P., Karim, S. S. A., Sridhar, D. (2021). SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet, 397, 952–954. https://doi.org/10.1016/S0140-6736(21)00370-6
Fontanet, A., Autran, B., Lina, B., Kieny, M. P., Karim, S. S. A., Sridhar, D. (2021). SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet, 397(10278), 952–954. https://doi.org/10.1016/S0140-6736(21)00370-6
Kagan, D., Campuzano, S., Balasubramanian, S., Kuralay, F., Flechsig, G. U., & Wang, J. (2011). Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Letters, 11(5), 2083–2087. https://doi.org/10.1021/nl2005687
Kagan, D., Campuzano, S., Balasubramanian, S., Kuralay, F., Flechsig, G. U., & Wang, J. (2011). Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Letters, 11(5), 2083–2087. https://doi.org/10.1021/nl2005687
Kevadiya, B. D., Machhi, J., Herskovitz, J., Oleynikov, M. D., Blomberg, W. R., Bajwa, N., ... & Patel, M. (2021). Diagnostics for SARS-CoV-2 infections. Nature Materials, 20(5), 593–605. https://doi.org/10.1038/s41563-020-00906-z
Kumar, K. P. A., & Pumera, M. (2021). 3D-Printing to mitigate COVID-19 pandemic. Advanced Functional Materials, 31, 2100450. https://doi.org/10.1002/adfm.202100450
Kumar, K. P. A., & Pumera, M. (2021). 3D-printing to mitigate COVID-19 pandemic. Advanced Functional Materials, 31(15), 2100450. https://doi.org/10.1002/adfm.202100450
Lee, J. S., Park, S., Jeong, H. W., et al. (2020). Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in the development of severe COVID-19. Science Immunology, 5(eabd1554). https://doi.org/10.1126/sciimmunol.abd1554
Li, H., Rothberg, L. (2004). Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences, 101(37), 14036–14039. https://doi.org/10.1073/pnas.0406115101
Li, J., de Ávila, B.E.F., Gao, W., Zhang, L., & Wang, J. (2017). Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Science Robotics, 2(9), eaam6431. https://doi.org/10.1126/scirobotics.aam6431
Lisman, T. (2018). Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell and Tissue Research, 371(567–576). https://doi.org/10.1007/s00441-017-2727-4
Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., & Lv, F. J. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 26(8), 1200–1204. https://doi.org/10.1038/s41591-020-0965-6
Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., & Lv, F. J. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 26(8), 1200–1204. https://doi.org/10.1038/s41591-020-0965-6
Majumdar, S., & Murphy, P. M. (2020). Chemokine regulation during epidemic coronavirus infection. Frontiers in Pharmacology, 11(600369). https://doi.org/10.3389/fphar.2020.600369
Manne, B. K., Denorme, F., Middleton, E. A., et al. (2020). Platelet gene expression and function in patients with COVID-19. Blood, 136(1317–1329). https://doi.org/10.1182/blood.2020007214
Mayorga-Martinez, C.C., & Pumera, M. (2020). Self-propelled tags for protein detection. Advanced Functional Materials, 30, 1906449. https://doi.org/10.1002/adfm.201906449
McClain, M. T., Constantine, F. J., Henao, R., et al. (2021). Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nature Communications, 12(1079). https://doi.org/10.1038/s41467-021-21289-y
Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F., & Schmidt, O. G. (2016). Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Letters, 16(7), 555–561. https://doi.org/10.1021/acs.nanolett.5b04221
Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F., & Schmidt, O. G. (2016). Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Letters, 16(9), 555–561. https://doi.org/10.1021/acs.nanolett.5b04221
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
Mina, M. J., & Andersen, K. G. (2021). COVID-19 testing: one size does not fit all. Science, 371(6524), 126–127. https://doi.org/10.1126/science.abe9187
Nahmias, Y., Ehrlich, A., Ioannidis, K., et al. (2021). Metabolic regulation of SARS-CoV-2 infection. Research Square. https://doi.org/10.21203/rs.3.rs-770724/v1
Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., ... Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0
Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3, 113–124. https://doi.org/10.1038/s41578-018-0016-9
Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: A storm is raging. Journal of Clinical Investigation, 130(2202–2205). https://doi.org/10.1172/JCI137647
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Vanderplas, J. (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
Schmidt, C.K., Medina-Sánchez, M., Edmondson, R.J., & Schmidt, O.G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 5618. https://doi.org/10.1038/s41467-020-19322-7
Schutz, D., Ruiz-Blanco, Y. B., Munch, J., Kirchhoff, F., Sanchez-Garcia, E., & Muller, J. A. (2020). Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 167, 47–65. https://doi.org/10.1016/j.addr.2020.11.007
Shah, M., Ahmad, B., Choi, S., & Woo, H. G. (2020). Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Computational and Structural Biotechnology Journal, 18, 3402–3414. https://doi.org/10.1016/j.csbj.2020.11.002
Soto, F., Wang, J., Ahmed, R., & Demirci, U. (2020). Medical micro/nanorobots in precision medicine. Advanced Science, 7(15), 2002203. https://doi.org/10.1002/advs.202002203
Sun, L. (2013). Peptide-based drug development. Modern Chemistry Applications, 1(1), 1–2. https://doi.org/10.4172/2329-6798.1000e103
Talebian, S., Wallace, G. G., Schroeder, A., Stellacci, F., & Conde, J. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15(7), 618–621. https://doi.org/10.1038/s41565-020-0751-0
Talebian, S., Wallace, G. G., Schroeder, A., Stellacci, F., Conde, J. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15, 618–621. https://doi.org/10.1038/s41565-020-0751-0
Ussia, M., Urso, M., Dolezelikova, K., Michalkova, H., Adam, V., & Pumera, M. (2021). Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Advanced Functional Materials. https://doi.org/10.1002/adfm.202101178
Vach, P. J., Fratzl, P., Klumpp, S., & Faivre, D. (2015). Fast magnetic micropropellers with random shapes. Nano Letters, 15(10), 7064–7070. https://doi.org/10.1021/acs.nanolett.5b03131
Vyskocil, J., Mayorga-Martinez, C.C., Jablonska, E., Novotny, F., Ruml, T., & Pumera, M. (2020). Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano, 14(8), 8247–8256. https://doi.org/10.1021/acsnano.0c01705
Wang, B., Kostarelos, K., Nelson, B.J., & Zhang, L. (2020). Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Advanced Materials. https://doi.org/10.1002/adma.202002047
Wang, H., & Pumera, M. (2018). Micro/nanomachines and living biosystems: from simple interactions to microcyborgs. Advanced Functional Materials, 28(8), 1705421. https://doi.org/10.1002/adfm.201705421
Wang, H., & Pumera, M. (2018). Micro/nanomachines and living biosystems: From simple interactions to microcyborgs. Advanced Functional Materials, 28(10), 1705421. https://doi.org/10.1002/adfm.201705421
World Health Organization. (2021). COVID-19 weekly epidemiological update, edition 43, 8 June 2021. Retrieved from https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2021
Wouters, O. J., Shadlen, K. C., Salcher-Konrad, M., Pollard, A. J., Larson, H. J., Teerawattananon, Y., Jit, M., et al. (2021). Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet, 397(1023–1034). https://doi.org/10.1016/S0140-6736(21)00306-8
Wouters, O. J., Shadlen, K. C., Salcher-Konrad, M., Pollard, A. J., Larson, H. J., Teerawattananon, Y., Jit, M., et al. (2021). Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. The Lancet, 397(10278), 1023–1034. https://doi.org/10.1016/S0140-6736(21)00306-8
Ying, Y., Pourrahimi, A.M., Sofer, Z., Matejková, S., & Pumera, M. (2019). Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal–organic frameworks. ACS Nano, 13(11), 11477–11487. https://doi.org/10.1021/acsnano.9b04960
Zhang, L., Petit, T., Lu, Y., Kratochvil, B. E., Peyer, K. E., Pei, R., ... & Nelson, B. J. (2010). Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano, 4(11), 6228–6234. https://doi.org/10.1021/nn101861n
Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L., & Pumera, M. (2021). Magnetically driven micro and nanorobots. Chemical Reviews, 121(7), 4999–5041. https://doi.org/10.1021/acs.chemrev.0c01234
View Dimensions
View Altmetric
Save
Citation
View
Share