References
Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., & Laenger, F. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. Nature Medicine, 26(6), 1017-1033. https://doi.org/10.1038/s41591-020-0901-1
Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2021). SARS-CoV-2 vaccines: Development, efficacy, and safety. Journal of Virus Research, 104(2), 111-115. https://doi.org/10.1016/j.virusres.2021.104536
Alafeef, M., Dighe, K., Moitra, P., & Pan, D. (2020). Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 14(12), 17028–17045. https://doi.org/10.1021/acsnano.0c06392
Arunachalam, P. S., Wimmers, F., Mok, C. K. P., Perera, R. A. P. M., & Venkatesan, S. (2020). SARS-CoV-2 infection induces a robust innate immune response that is associated with a rapid viral clearance. Nature Medicine, 26(5), 752-758. https://doi.org/10.1038/s41591-020-0865-1
Banerjee, A., Melton, C. T., & Kizilbash, S. (2020). The role of mRNA vaccines in the pandemic: An overview of risks and benefits. The Journal of Clinical Investigation, 130(8), 4182-4193. https://doi.org/10.1172/JCI139195
Becker, L. M. (2020). Public health ethics in the COVID-19 vaccine rollout. Journal of Public Health Policy, 41(4), 547-552. https://doi.org/10.1057/s41271-020-00238-2
Bibert, S., Tiberghien, P., & Herve, C. (2021). SARS-CoV-2 vaccine technology and its future implications. Vaccine Research and Development, 12(4), 601-610. https://doi.org/10.1016/j.vrev.2021.04.003
Bock, S. A., & Ortea, I. (2020). mRNA technology and its implications for COVID-19 treatment and prevention. Molecular Therapy, 28(9), 1959-1967. https://doi.org/10.1016/j.ymthe.2020.06.016
Bouhaddou, M., Saborowski, T., & Combes, R. (2020). SARS-CoV-2 and its role in the immune system’s dysfunction. Cell Host & Microbe, 28(1), 22-32. https://doi.org/10.1016/j.chom.2020.06.004
Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., & Beskid, T. R. (2020). Assay techniques and test development for COVID-19 diagnosis. ACS Central Scince, 6(5), 591–605. https://doi.org/10.1021/acscentsci.0c00501
Combes, R. D., Purnell, S., & Reeve, A. (2021). Investigating the effects of SARS-CoV-2 and its spike protein on immune responses. Frontiers in Immunology, 12(3), 767-773. https://doi.org/10.3389/fimmu.2021.636233
Comer, D. M., Fitzgerald, R. B., & Coperchini, F. (2021). The role of inflammatory pathways in COVID-19 pathogenesis. Immunology Reviews, 302(1), 25-38. https://doi.org/10.1111/imr.12816
Coperchini, F., Chiovato, L., & Magri, F. (2021). COVID-19 vaccines and the spike protein. Endocrine Reviews, 42(5), 514-526. https://doi.org/10.1210/endrev/bnab006
Fontanet, A., Autran, B., Lina, B., Kieny, M. P., Karim, S. S. A., Sridhar, D. (2021). SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet, 397, 952–954. https://doi.org/10.1016/S0140-6736(21)00370-6
Fontanet, A., Autran, B., Lina, B., Kieny, M. P., Karim, S. S. A., Sridhar, D. (2021). SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet, 397(10278), 952–954. https://doi.org/10.1016/S0140-6736(21)00370-6
Kagan, D., Campuzano, S., Balasubramanian, S., Kuralay, F., Flechsig, G. U., & Wang, J. (2011). Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Letters, 11(5), 2083–2087. https://doi.org/10.1021/nl2005687
Kagan, D., Campuzano, S., Balasubramanian, S., Kuralay, F., Flechsig, G. U., & Wang, J. (2011). Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Letters, 11(5), 2083–2087. https://doi.org/10.1021/nl2005687
Kevadiya, B. D., Machhi, J., Herskovitz, J., Oleynikov, M. D., Blomberg, W. R., Bajwa, N., ... & Patel, M. (2021). Diagnostics for SARS-CoV-2 infections. Nature Materials, 20(5), 593–605. https://doi.org/10.1038/s41563-020-00906-z
Kumar, K. P. A., & Pumera, M. (2021). 3D-Printing to mitigate COVID-19 pandemic. Advanced Functional Materials, 31, 2100450. https://doi.org/10.1002/adfm.202100450
Kumar, K. P. A., & Pumera, M. (2021). 3D-printing to mitigate COVID-19 pandemic. Advanced Functional Materials, 31(15), 2100450. https://doi.org/10.1002/adfm.202100450
Lee, J. S., Park, S., Jeong, H. W., et al. (2020). Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in the development of severe COVID-19. Science Immunology, 5(eabd1554). https://doi.org/10.1126/sciimmunol.abd1554
Li, H., Rothberg, L. (2004). Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences, 101(37), 14036–14039. https://doi.org/10.1073/pnas.0406115101
Li, J., de Ávila, B.E.F., Gao, W., Zhang, L., & Wang, J. (2017). Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Science Robotics, 2(9), eaam6431. https://doi.org/10.1126/scirobotics.aam6431
Lisman, T. (2018). Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell and Tissue Research, 371(567–576). https://doi.org/10.1007/s00441-017-2727-4
Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., & Lv, F. J. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 26(8), 1200–1204. https://doi.org/10.1038/s41591-020-0965-6
Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., & Lv, F. J. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 26(8), 1200–1204. https://doi.org/10.1038/s41591-020-0965-6
Majumdar, S., & Murphy, P. M. (2020). Chemokine regulation during epidemic coronavirus infection. Frontiers in Pharmacology, 11(600369). https://doi.org/10.3389/fphar.2020.600369
Manne, B. K., Denorme, F., Middleton, E. A., et al. (2020). Platelet gene expression and function in patients with COVID-19. Blood, 136(1317–1329). https://doi.org/10.1182/blood.2020007214
Mayorga-Martinez, C.C., & Pumera, M. (2020). Self-propelled tags for protein detection. Advanced Functional Materials, 30, 1906449. https://doi.org/10.1002/adfm.201906449
McClain, M. T., Constantine, F. J., Henao, R., et al. (2021). Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nature Communications, 12(1079). https://doi.org/10.1038/s41467-021-21289-y
Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F., & Schmidt, O. G. (2016). Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Letters, 16(7), 555–561. https://doi.org/10.1021/acs.nanolett.5b04221
Medina-Sánchez, M., Schwarz, L., Meyer, A. K., Hebenstreit, F., & Schmidt, O. G. (2016). Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Letters, 16(9), 555–561. https://doi.org/10.1021/acs.nanolett.5b04221
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
Mina, M. J., & Andersen, K. G. (2021). COVID-19 testing: one size does not fit all. Science, 371(6524), 126–127. https://doi.org/10.1126/science.abe9187
Nahmias, Y., Ehrlich, A., Ioannidis, K., et al. (2021). Metabolic regulation of SARS-CoV-2 infection. Research Square. https://doi.org/10.21203/rs.3.rs-770724/v1
Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., ... Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0
Palagi, S., & Fischer, P. (2018). Bioinspired microrobots. Nature Reviews Materials, 3, 113–124. https://doi.org/10.1038/s41578-018-0016-9
Pedersen, S. F., & Ho, Y. C. (2020). SARS-CoV-2: A storm is raging. Journal of Clinical Investigation, 130(2202–2205). https://doi.org/10.1172/JCI137647
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Vanderplas, J. (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
Schmidt, C.K., Medina-Sánchez, M., Edmondson, R.J., & Schmidt, O.G. (2020). Engineering microrobots for targeted cancer therapies from a medical perspective. Nature Communications, 11(1), 5618. https://doi.org/10.1038/s41467-020-19322-7
Schutz, D., Ruiz-Blanco, Y. B., Munch, J., Kirchhoff, F., Sanchez-Garcia, E., & Muller, J. A. (2020). Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 167, 47–65. https://doi.org/10.1016/j.addr.2020.11.007
Shah, M., Ahmad, B., Choi, S., & Woo, H. G. (2020). Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Computational and Structural Biotechnology Journal, 18, 3402–3414. https://doi.org/10.1016/j.csbj.2020.11.002
Soto, F., Wang, J., Ahmed, R., & Demirci, U. (2020). Medical micro/nanorobots in precision medicine. Advanced Science, 7(15), 2002203. https://doi.org/10.1002/advs.202002203
Sun, L. (2013). Peptide-based drug development. Modern Chemistry Applications, 1(1), 1–2. https://doi.org/10.4172/2329-6798.1000e103
Talebian, S., Wallace, G. G., Schroeder, A., Stellacci, F., & Conde, J. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15(7), 618–621. https://doi.org/10.1038/s41565-020-0751-0
Talebian, S., Wallace, G. G., Schroeder, A., Stellacci, F., Conde, J. (2020). Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nature Nanotechnology, 15, 618–621. https://doi.org/10.1038/s41565-020-0751-0
Ussia, M., Urso, M., Dolezelikova, K., Michalkova, H., Adam, V., & Pumera, M. (2021). Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Advanced Functional Materials. https://doi.org/10.1002/adfm.202101178
Vach, P. J., Fratzl, P., Klumpp, S., & Faivre, D. (2015). Fast magnetic micropropellers with random shapes. Nano Letters, 15(10), 7064–7070. https://doi.org/10.1021/acs.nanolett.5b03131
Vyskocil, J., Mayorga-Martinez, C.C., Jablonska, E., Novotny, F., Ruml, T., & Pumera, M. (2020). Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano, 14(8), 8247–8256. https://doi.org/10.1021/acsnano.0c01705
Wang, B., Kostarelos, K., Nelson, B.J., & Zhang, L. (2020). Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Advanced Materials. https://doi.org/10.1002/adma.202002047
Wang, H., & Pumera, M. (2018). Micro/nanomachines and living biosystems: from simple interactions to microcyborgs. Advanced Functional Materials, 28(8), 1705421. https://doi.org/10.1002/adfm.201705421
Wang, H., & Pumera, M. (2018). Micro/nanomachines and living biosystems: From simple interactions to microcyborgs. Advanced Functional Materials, 28(10), 1705421. https://doi.org/10.1002/adfm.201705421
World Health Organization. (2021). COVID-19 weekly epidemiological update, edition 43, 8 June 2021. Retrieved from https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2021
Wouters, O. J., Shadlen, K. C., Salcher-Konrad, M., Pollard, A. J., Larson, H. J., Teerawattananon, Y., Jit, M., et al. (2021). Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet, 397(1023–1034). https://doi.org/10.1016/S0140-6736(21)00306-8
Wouters, O. J., Shadlen, K. C., Salcher-Konrad, M., Pollard, A. J., Larson, H. J., Teerawattananon, Y., Jit, M., et al. (2021). Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. The Lancet, 397(10278), 1023–1034. https://doi.org/10.1016/S0140-6736(21)00306-8
Ying, Y., Pourrahimi, A.M., Sofer, Z., Matejková, S., & Pumera, M. (2019). Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal–organic frameworks. ACS Nano, 13(11), 11477–11487. https://doi.org/10.1021/acsnano.9b04960
Zhang, L., Petit, T., Lu, Y., Kratochvil, B. E., Peyer, K. E., Pei, R., ... & Nelson, B. J. (2010). Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano, 4(11), 6228–6234. https://doi.org/10.1021/nn101861n
Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L., & Pumera, M. (2021). Magnetically driven micro and nanorobots. Chemical Reviews, 121(7), 4999–5041. https://doi.org/10.1021/acs.chemrev.0c01234