Nanotechnology in Agriculture and Water Quality Management
Syeda Fatema Tamanna1, Muhtasim Noyel2, Md Fatin3, Mehedi Hasan Rabbi4, Debashis Chandra Das5, Tufael3*
Applied Agriculture Sciences 3(1) 1-8 https://doi.org/10.25163/agriculture.3110170
Submitted: 04 February 2025 Revised: 10 April 2025 Published: 14 April 2025
Abstract
Background: Nanotechnology has offering revolutionized challenges in the agri-food sector while addressing challenges in agriculture and water quality management for preservation, packaging, and food safety. Nanomaterials has their own physico-chemical properties, which are being used for improving food quality, extending shelf life and for increasing agricultural productivity. Methods: This review investigate the applications of various nanomaterials, including nanoscale carriers, clay nanotubes, photocatalysis, and nanobiosensors highlighting their synthesis, mechanisms and applications. The importance of the development of innovations such as fabricated xylem vessels, nanolignocellulosic materials and nanobarcode technology. This research focuses on combined nanotechnology with agricultural practices and water treatment systems. Results: the significant of this result is to reveal the effectiveness of nanotechnology in increasing nutrient delivery, reducing chemical runoff and improving plant health. Nanoscale carriers develop pesticide and fertilizer delivery, while photocatalysis effectively degrades harmful compounds in wastewater. Nanolignocellulosic materials derived from agricultural waste which offer sustainable solutions for packaging and construction of clay nanotubes that significantly reduce pesticide usage. Conclusion: Nanotechnology presents transformative opportunities for eco-friendly agricultural and environmental management. The potential of nanotechnology in nutrient delivery, waste management and water treatment to revolutionize agricultural practices. Future research should focus on addressing challenges such as scalability, environmental impacts and regulatory while consider about the harmness of the potential of nanotechnology in agriculture and water quality management.
Keywords: Nanotechnology, Nanomaterials, Agriculture, Water Quality Management, Sustainability, Research Trends.
References
Abazari R, Mahjoub AR, Sanati S (2014) A facile and efficient preparation of anatase titania nanoparticles in micelle nanoreac- tors: morphology, structure, and their high photocatalytic activity under UV light illumination. RSC Adv 4:56406–56414. doi:10. 1039/C4RA10018B
Abdallah H, Moustafa AF, AlAnezi AA, El-Sayed HEM (2014) Performance of a newly developed titanium oxide nanotubes/ polyethersulfone blend membrane for water desalination using vacuum membrane distillation. Desalination 346:30–36. doi:10. 1016/j.desal.2014.05.003
Arciola CR, Campoccia D, Speziale P et al (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. doi:10.1016/j.biomaterials.2012.05.031
Babula P, Adam V, Opatrilova R et al (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213
Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nano- materials in food and agricultural samples: a review. Environ Eng Sci 30:118–125. doi:10.1089/ees.2012.0325
Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412. doi:10.2113/gsele ments.4.6.407
Bhatkhande DS, Pangarkar VG, Beenackers A (2002) Photocatalytic degradation for environmental applications—a review. J Chem Technol Biotechnol 77:102–116. doi:10.1002/jctb.532
Bhushan B (2011) Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J Nanotechnol 2:66–84. doi:10.3762/bjnano.2.9
Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26: 1146–1153
Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technol- ogy and applications. Carbohydr Polym 94:154–169
Cai D, Wu Z, Jiang J et al (2014) Controlling nitrogen migration through micro-nano networks. Sci Rep 4:3665. doi:10.1038/ srep03665
Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299
Chamakura K, Perez-Ballestero R, Luo Z et al (2011) Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf B Biointerfaces 84:88–96. doi:10.1016/j.colsurfb.2010.12.020
Chauke VP, Antunes E, Chidawanyika W, Nyokong T (2011) Photocatalytic behaviour of tantalum(V) phthalocyanines in the presence of gold nanoparticles towards the oxidation of cyclo- hexene. J Mol Catal A Chem 335:121–128. doi:10.1016/j. molcata.2010.11.023
Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi:10.1016/j.tifs.2011.09.004
Cheng LW, Stanker LH (2013) Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electro- chemiluminescent immunoassay in food and serum. J Agric Food Chem 61:755–760. doi:10.1021/jf3041963
Chiu HM, Yang TH, Hsueh YC et al (2015) Fabrication and characterization of well-dispersed plasmonic Pt nanoparticles on Ga-doped ZnO nanopagodas array with enhanced photocatalytic activity. Appl Catal B Environ 163:156–166. doi:10.1016/j. apcatb.2014.07.039
Compagnone D, McNeil CJ, Athey D et al (1995) An amperometric NADH biosensor based on NADH oxidase from Thermus aquaticus. Enzyme Microb Technol 17:472–476. doi:10.1016/ 0141-0229(94)00110-D
Cross KM, Lu Y, Zheng T, et al (2014) Water decontamination using iron and iron oxide nanoparticles, chapter 27. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc., pp 423–439
Cursino L, Li Y, Zaini PA et al (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 299:193–199. doi:10.1111/j.1574-6968.2009.01747.x
Danie Kingsley J, Ranjan S, Dasgupta N, Saha P (2013) Nanotech- nology for tissue engineering: need, techniques and applications. J Pharm Res. doi:10.1016/j.jopr.2013.02.021
Das R, Ali ME, Hamid SBA et al (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109
Dasgupta N, Ranjan S, Mundekkad D et al (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400
Dasgupta N, Ramalingam C (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14:477–485
Dasgupta N, Ranjan S, Chakraborty AR et al (2016a) Nanoagriculture and water quality management. In: Ranjan S, Nandita D, Lichtfouse E (eds) Nanoscience in food and agriculture 1. Springer, Berlin
Dasgupta N, Ranjan S, Patra D et al (2016b) Bovine serum albumin interacts with silver nanoparticles with a ‘‘side-on’’ or ‘‘end on’’ conformation. Chem Biol Interact 253:100–111. doi:10.1016/j. cbi.2016.05.018
Dasgupta N, Ranjan S, Rajendran B et al (2016c) Thermal co- reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pol Res 23:4149–4163
De La Fuente L, Burr TJ, Hoch HC (2007) Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J Bacteriol 189:7507–7510. doi:10.1128/JB. 00934-07
Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3:33002. doi:10.1088/2043-6262/ 3/3/033002
Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284
Drobek M, Yacou C, Motuzas J et al (2012) Long term pervaporation desalination of tubular MFI zeolite membranes. J Membr Sci 415–416:816–823. doi:10.1016/j.memsci.2012.05.074
Edgar P-E, Andrea B, Ramon M-M, Jose MB (2011) Recent patents in food nanotechnology. Recent Pat Food Nutr Agric 3:172–178
El-Deen AG, Barakat NAM, Khalil KA et al (2014a) Graphene/SnO2 nanocomposite as an effective electrode material for saline water desalination using capacitive deionization. Ceram Int 40: 14627–14634. doi:10.1016/j.ceramint.2014.06.049
El-Deen AG, Barakat NAM, Kim HY (2014b) Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344:289–298. doi:10.1016/j.desal.2014.03.028
Essalhi M, Khayet M (2014) Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentra- tion and desalination by direct contact membrane distillation. J Membr Sci 454:133–143. doi:10.1016/j.memsci.2013.11.056
Fan W, Wu C, Han P et al (2012) Porous Ca–Si-based nanospheres: a potential intra-canal disinfectant-carrier for infected canal treat- ment. Mater Lett 81:16–19. doi:10.1016/j.matlet.2012.04.142
Farmen L (2009) Commercialization of nanotechnology for removal of heavy metals in drinking water. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc., Norwich, pp 115–130
Faunce T, Bruce A, Donohoo A et al (2014) Nanomaterial governance, planetary health, and the sustainocene transition. In: Hull M, Bowman D (eds) Nanotechnology environmental health and safety, 2nd edn. William Andrew Inc., Norwich
Feigl C, Russo SP, Barnard AS (2010) Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles. J Mater Chem 20:4971–4980
Goh PS, Ismail AF, Ng BC (2013) Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308:2–14
Grue`re GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198. doi:10. 1016/j.foodpol.2012.01.001
Guo X, Chen C, Song W et al (2014) CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J Mol Catal A Chem 387:1–6. doi:10.1016/j.molcata.2014.02.020
Hamon M, Oyarzabal OA, Hong JW (2013) Nanoliter/picoliter scale fluidic systems for food safety. In: Bosoon P, Michael A (eds) ACS symposium series: advances in applied nanotechnology for agriculture. American Chemical Society, pp 145–165
Han D, Hong J, Kim HC et al (2013) Multiplexing enhancement for the detection of multiple pathogen DNA. J Nanosci Nanotechnol. doi:10.1166/jnn.2013.8096
He MX, Wang JL, Qin H et al (2014) Bamboo: a new source of carbohydrate for biorefinery. Carbohydr Polym 111:645–654
Hoek EMV, Ghosh AK (2009) Nanotechnology-based membranes for water purification. Nanotechnol Appl Clean Water 4:47–58
Homhoul P, Pengpanich S, Hunsom M (2011) Treatment of distillery wastewater by the nano-scale zero-valent iron and the supported nano-scale zero-valent iron. Water Environ Res 83:65–74. doi:10.2175/106143010X12780288628291
Hossain MK, Ghosh SC, Boontongkong Y et al (2005) Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J Metastab Nanocryst Mater 23:27–30. doi:10.4028/www. scientific.net/JMNM.23.27
Hsu HL, Jehng JM (2009) Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor. Mater Sci Eng C Biomim Supramol Syst 29:55–61. doi:10.1016/j.msec.2008.05.011
Hua M, Zhang S, Pan B et al (2012) Heavy metal removal from water/ wastewater by nanosized metal oxides: a review. J Hazard Mater 212:317–331. doi:10.1016/j.jhazmat.2011.10.016
Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57. doi:10.1111/j.1750-3841.2009.01457.x
Hutter E, Maysinger D (2013) Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 34:497–507
Ingle AP, Seabra AB, Duran N, Rai M (2014) Nanoremediation: a new and emerging technology for the removal of toxic contam- inant from environment, chapter 9. In: Das S (ed) Microbial biodegradation and bioremediation, 1st edn. Elsevier
Jain A, Shivendu R, Nandita D, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr. doi:10.1080/ 10408398.2016.1160363
Janardan S, Suman P, Ragul G et al (2016) Assessment on antibacterial activity of nanosized silica derived from hyperco- ordinated silicon(IV) precursors guidelines to the referees. RSC Adv. doi:10.1039/C6RA12189F
Jasra RV, Bajaj HC, Mody HM (1999) Clay as a versatile material for catalysts and adsorbents. Bull Catal Soc India 9:113–121
Ji Z, Ismail MN, Callahan DM et al (2011) The role of silver nanoparticles on silver modified titanosilicate ETS-10 in visible light photocatalysis. Appl Catal B Environ 102:323–333. doi:10. 1016/j.apcatb.2010.12.021
Jiang Z, Shangguan W (2015) Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self- photocatalysis degradation. Catal Today 242:372–380. doi:10. 1016/j.cattod.2014.07.037
Jiang LC, Basri M, Omar D et al (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci 69:104–111. doi:10.1002/ps.3371
Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279
Kabeel AE, El-Said EMS (2013) A hybrid solar desalination system of air humidification-dehumidification and water flashing evap- oration. Part I. A numerical investigation. Desalination 320:56–72. doi:10.1016/j.desal.2013.04.016
Kabeel AE, El-Said EMS (2014) A hybrid solar desalination system of air humidification, dehumidification and water flashing evaporation: part II. Experimental investigation. Desalination 341:50–60. doi:10.1016/j.desal.2014.02.035
Kalra A, Chechi R, Khanna R (2010) Role of Zigbee Technology in agriculture sector. In: National conference on computational instrumentation NCCI 2010 CSIO (19–20 March 2010 Chandi- garh, India), p 151
Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@ TiO 2 core–shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76
Khataee AR, Fathinia M, Joo SW (2013) Simultaneous monitoring of photocatalysis of three pharmaceuticals by immobilized TiO2 nanoparticles: chemometric assessment, intermediates identifica- tion and ecotoxicological evaluation. Spectrochim Acta Part A Mol Biomol Spectrosc 112:33–45. doi:10.1016/j.saa.2013.04.028
Khataee A, Karimi A, Zarei M, Joo SW (2015) Eu-doped ZnO nanoparticles: sonochemical synthesis, characterization, and sonocatalytic application. Ultrason Sonochem. doi:10.1016/j. ultsonch.2015.03.016
Ko Y-D, Kang J-G, Park J-G et al (2009) Self-supported SnO 2 nanowire electrodes for high-power lithium-ion batteries. Nan- otechnology 20:455701. doi:10.1088/0957-4484/20/45/455701
Ko W, Jung N, Lee M et al (2013) Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes. ACS Nano 7:6685–6690
Kumar R, Chawla J (2014) Removal of cadmium ion from water/ wastewater by nano-metal oxides: a review. Water Qual Expo Heal 5:215–226. doi:10.1007/s12403-013-0100-8
Kumar A, Ting Y-P (2013) Effect of sub-inhibitory antibacterial stress on bacterial surface properties and biofilm formation. Colloids Surf B Biointerfaces 111:747–754
Laborie M-PG (2009) Bacterial cellulose and its polymeric nanocom- posites. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 231–271
Labroo P, Cui Y (2014) Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. Anal Chim Acta 813:90–96. doi:10.1016/j.aca.2014.01.024
Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Memb Sci 370:1–22
Lhomme L, Brosillon S, Wolbert D (2008) Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere 70:381–386. doi:10.1016/j.chemosphere.2007.07.004
Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137. doi:10. 1016/S0045-6535(02)00787-7
Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41. doi:10.1007/BF03214964
Li J, Xu Q, Wei X, Hao Z (2013) Electrogenerated chemilumines- cence immunosensor for Bacillus thuringiensis Cry1Ac based on Fe3O4@ Au nanoparticles. J Agric Food Chem 61:1435–1440
Li X, Chen Y, Hu X et al (2014) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Memb Sci 471:118–129. doi:10.1016/j. memsci.2014.08.018
Lim CJ, Basri M, Omar D et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102:19–29. doi:10.1016/j.pestbp.2011.10.004
Liu Y, Chen X (2013) High permeability and salt rejection reverse osmosis by a zeolite nano-membrane. Phys Chem Chem Phys 15:6817–6824
Mahmood MA, Baruah S, Dutta J (2011) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 130:531–535. doi:10. 1016/j.matchemphys.2011.07.018
Malato S, Blanco J, Ca´ceres J et al (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal Today 76:209–220. doi:10.1016/S0920-5861 (02)00220-1
Mannoor MS, Tao H, Clayton JD et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763. doi:10.1038/ncomms1767
Mathew AP, Laborie MPG, Oksman K (2009) Cross-linked chi- tosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromol 10:1627–1632. doi:10. 1021/bm9002199
McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 159:213–228. doi:10. 1016/j.cis.2010.06.010
McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606. doi:10.1080/10408390902841529
Melemeni M, Stamatakis D, Xekoukoulotakis NP et al (2009) Disinfection of municipal wastewater by TiO2 photocatalysis with UV-A, visible and solar irradiation and bdd electrolysis. Glob Nest J 11:357–363
Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125
Murphy K (ed) (2008) Nanotechnology: agriculture’s next industrial revolution. Financial Partner, Yankee Farm Credit, ACA, Williston, pp 3–5
Myint MTZ, Al-Harthi SH, Dutta J (2014) Brackish water desalina- tion by capacitive deionization using zinc oxide micro/nanos- tructures grafted on activated carbon cloth electrodes. Desalination 344:236–242. doi:10.1016/j.desal.2014.03.037
Nandita D, Ranjan S, Mundra S et al (2016) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characteriza- tion and its application. Int J Food Prop 19:700–708. doi:10. 1080/10942912.2015.1042587
Nangmenyi G, Economy J, Diallo M et al (2009) Nanometallic particles for oligodynamic microbial disinfection. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (eds) Nanotechnology applications for clean water. Elsevier
Naraginti S, Stephen FB, Radhakrishnan A, Sivakumar A (2015) Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue. Spectrochim Acta Part A Mol Biomol Spectrosc 135:814–819. doi:10.1016/j.saa.2014.07. 070
Nath N, Chilkoti A (2004) Label free colorimetric biosensing using nanoparticles. J Fluoresc 14:377–389
Nikonenko VV, Kovalenko AV, Urtenov MK et al (2014) Desalina- tion at overlimiting currents: state-of-the-art and perspectives. Desalination 342:85–106. doi:10.1016/j.desal.2014.01.008
Nithila SDR, Anandkumar B, Vanithakumari SC et al (2014) Studies to control biofilm formation by coupling ultrasonication of natural waters and anodization of titanium. Ultrason Sonochem 21:189–199. doi:10.1016/j.ultsonch.2013.06.010
Pant M, Dubey S, Patanjali PK et al (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127. doi:10.1016/j. ibiod.2013.11.019
Patel PD (2002) (Bio) sensors for measurement of analytes implicated in food safety: a review. TrAC Trends Anal Chem 21:96–115
Pe´rez-Esteve E, Bernardos A, Mart´inez-Man˜ez R, Barat JM (2011) Recent patents in food nanotechnology. Recent Pat Food Nutr Agric 3:172–178. doi:10.2174/2212798411103030172
Perez-Esteve E, Bernardos A, Mart´inez-Ma´n˜ez R, Barat JM (2013) Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis. Recent Pat Food Nutr Agric 5:35–43
Pigeot-Re´my S, Simonet F, Errazuriz-Cerda E et al (2011) Photo-catalysis and disinfection of water: identification of potential bacterial targets. Appl Catal B Environ 104:390–398. doi:10. 1016/j.apcatb.2011.03.001
Qi L, Pinggui W, Ku SJ (2009) Nanostructured visible-light photocatalysts for water purification. In: Savage N, Diallo M, Duncan J, Street A, Sustich R (ed) Nanotechnology applications for clean water: solutions for improving water quality. William Andrew Inc., Norwich, p 17
Rambo CR, Hotza D, Da Cunha CR, Zollfrank C (2013) Directed photoluminescent emission of ZnO tetrapods on biotemplated Al2O3. Opt Mater (Amst) 36:562–567. doi:10.1016/j.optmat. 2013.10.035
Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett. doi:10.1007/s10311-016-0586-y
Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanoparticle Res 16:2464. doi:10.1007/s11051-014-2464-5
Ranjan S, Dasgupta N, Chinnappan S et al (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-015-0673-z
Ranjan S, Dasgupta N, Rajendran B et al (2016a) Microwave- irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evalua-tion. Environ Sci Pollut Res. doi:10.1007/s11356-016-6440-8
Ranjan S, Dasgupta N, Srivastava P, Ramalingam C (2016b) A spectroscopic study on interaction between bovine serum albumin and titanium dioxide nanoparticle synthesized from microwave- assisted hybrid chemical approach. J Photochem Photobiol B Biol 161:472–481. doi:10.1016/j.jphotobiol.2016.06.015
Ranjan S, Nandita D, Lichtfouse E (2016c) Nanoscience in food and agriculture 3, 1st edn. Springer International Publishing, Switzerland
Ranjan S, Nandita D, Lichtfouse E (2016d) Nanoscience in food and agriculture 1, 1st edn. Springer International Publishing, Switzerland
Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly Application of Nanomaterials: nanobioremediation. J Nanoparti- cles 2014:1–7. doi:10.1155/2014/431787
Rocha-Santos TA (2014) Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal Chem 62:28–36. doi:10.1016/j.trac.2014.06.016
Santangelo S, Gorrasi G, Di Lieto R et al (2011) Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl Clay Sci 53:188–194. doi:10.1016/j.clay.2010.12.013
Schoumans OF, Chardon WJ, Bechmann ME et al (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468–469:1255–1266. doi:10.1016/j.scitotenv.2013.08.061
SciFinder (2014) SciFinder® database.www.scifinder.cas.org. www.scifinder.cas.org. Accessed 6 Sep 2014
Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9:17–18
Shi XF, Xia XY, Cui GW et al (2015) Multiple exciton generation application of PbS quantum dots in ZnO@PbS/graphene oxide for enhanced photocatalytic activity. Appl Catal B Environ 163:123–128. doi:10.1016/j.apcatb.2014.07.054
Shivendu R, Nandita D, Lichtfouse E (2016) Nanoscience in food and agriculture 2, 1st edn. Springer International Publishing Switzer- land, Switzerland
Shukla A, Nandita D, Shivendu R et al (2017) Nanotechnology towards prevention of anemia and osteoporosis: from concept to market. Biotechnol Biotechnol Equip. doi:10.1080/13102818. 2017.1335615
SIAD (2014) Scopus indexed article database. www.scopus.com. www.scopus.com. Accessed 6 Jun 2014
Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germina- tion of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21:13–17. doi:10.1016/j.sjbs.2013.04.005
Silva LIB, Ferreira FDP, Freitas AC et al (2010) Optical fibre-based micro-analyser for indirect measurements of volatile amines levels in fish. Food Chem 123:806–813. doi:10.1016/j.foodchem. 2010.05.014
Sinha Ray S (2013) 8—Tensile properties of environmentally friendly polymer nanocomposites using biodegradable polymer matrices and clay/carbon nanotube (CNT) reinforcements. In: Environ- mentally friendly polymer nanocomposites. Elsevier, pp 225–268
Sinha A, Singh VN, Mehta BR, Khare SK (2011) Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation. J Hazard Mater 192:620–627. doi:10.1016/ j.jhazmat.2011.05.103
Sireesh BM, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of size- controllable gold nanoparticles. RSC Adv. doi:10.1039/c5ra03117f
Sireesh BM, Mandal BK, Shivendu R, Nandita D (2017) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B Biol 166:252–258
Sirinutsomboon B, Delwiche MJ, Young GM (2011) Attachment of Escherichia coli on plant surface structures built by microfab- rication. Biosyst Eng 108:244–252. doi:10.1016/j.biosystem seng.2010.12.007
Siripireddy B, Mandal BK, Shivendu R et al (2017) Nano-zirconia – Evaluation of its antioxidant and anticancer activity. J Photochem Photobiol B Biol. doi:10.1016/j.jphotobiol.2017.04.004
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ (2012) Salmonella biofilms: an overview on occurrence, struc- ture, regulation and eradication. Food Res Int 45:502–531. doi:10.1016/j.foodres.2011.01.038
Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem 76:4806–4810. doi:10.1021/ac049442+
Subramani A, Voutchkov N, Jacangelo JG (2014) Desalination energy minimization using thin film nanocomposite membranes. Desalination 350:35–43
Sugunan A, Warad HC, Thanachayanont C et al (2005) Zinc oxide nanowires on non-epitaxial substrates from colloidal processing, for gas sensing applications. In: Nanostructured and advanced materials for applications in sensor, optoelectronic and photo- voltaic technology. Springer, Berlin, pp 335–338
Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B Environ 162:98–109. doi:10.1016/j.apcatb.2014.06.037
Tammina SK, Mandal BK, Ranjan S, Dasgupta N (2017) Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanopar- ticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B Biol 166:158–168. doi:10.1016/j.jphotobiol.2016.11.017
Tang W-W, Zeng G-M, Gong J-L et al (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–469:1014–1027. doi:10.1016/j.scitotenv.2013.09.044
Thorburn PJ, Wilkinson SN, Silburn DM (2013) Water quality in agricultural lands draining to the Great Barrier Reef: a review of causes, management and priorities. Agric Ecosyst Environ 180:4–20. doi:10.1016/j.agee.2013.07.006
Tungittiplakorn W, Lion LW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610. doi:10.1021/es0348997
Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358. doi:10.1021/es049031a
Tu¨rkog?lu EA, Yavuz H, Uzun L et al (2013) The fabrication of nanosensor-based surface plasmon resonance for IgG detection. Artif Cells Nanomed Biotechnol 41:213–221. doi:10.3109/ 10731199.2012.716066
Valladares Linares R, Li Z, Sarp S et al (2014) Forward osmosis niches in seawater desalination and wastewater reuse. Water Res 66:122–139
Vo¨ro¨smarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 468:334–334. doi:10.1038/nature09549
Walia N, Dasgupta N, Ranjan S et al (2017) Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility anal- ysis in simulated gastro-intestinal tract. Ultrason Sonochem 39:623–635. doi:10.1016/j.ultsonch.2017.05.021
Wang ZL (2012) Self-powered nanosensors and nanosystems. Adv Mater 24:280–285. doi:10.1002/adma.201102958
Wang Q, Hong J, Yan Y (2014) Biomimetic capillary inspired heat pipe wicks. J Bionic Eng 11:469–480. doi:10.1016/S1672- 6529(14)60059-7
Warad HC, Ghosh SC, Thanachayanont C et al (2004) Highly luminescent manganese doped ZnS quantum dots for biological labeling. In: Proceedings of international conference on smart materials (SMARTMAT-04), Chiang Mai, Thailand
Wegner LH (2012) Using the multifunctional Xylem probe for in situ studies of plant water and ion relations under saline conditions. Methods Mol Biol 913:35–66. doi:10.1007/978-1-61779-986-0- 3
Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 295:129–134. doi:10.1111/j.1574-6968. 2009.01597.x
Zhang S, Ren F, Wu W et al (2014a) Size effects of Ag nanoparticles on plasmon-induced enhancement of photocatalysis of Ag-a- Fe2O3 nanocomposites. J Colloid Interface Sci 427:29–34. doi:10.1016/j.jcis.2013.12.012
Zhang X, Zhang X, Yang B et al (2014b) A new class of red fluorescent organic nanoparticles: noncovalent fabrication and cell imaging applications. ACS Appl Mater Interfaces 6:3600–3606. doi:10.1021/am4058309
Zhang X, Zhang X, Yang B et al (2014c) Facile fabrication of AIE- based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids Surf B Biointerfaces 116:739–744. doi:10.1016/j.colsurfb.2013.12.010
Amin, M. S., Rahman, A., Prapty, A. N., Numan, A. A., Rahman, M. M., Ahmed, B., Shabuj, M. M. H., Aunni, S. A. A. (2024). "Nanomedicine in Cancer Therapy: From Preclinical Promise to Clinical Applications", Journal of Precision Biosciences, 6(1),1-14,10064. https://doi.org/10.25163/biosciences.6110064
Zhao W, Guo Y, Wang S et al (2015) A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/ AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. Appl Catal B Environ 165:335–343. doi:10.1016/j. apcatb.2014.10.016
View Dimensions
View Altmetric
Save
Citation
View
Share