Enhancing Silicon Solar Cell Efficiency through Graphene Integration: A Review of Recent Advances
Uma Harikrishnan 1*
Biosensors and Nanotheranostics 1(1) 1-6 https://doi.org/10.25163/biosensors.117341
Submitted: 04 October 2022 Revised: 19 December 2022 Published: 23 December 2022
Abstract
Background: Solar cells play a crucial role in renewable energy, contributing to sustainable development and a clean environment. This review investigates the integration of Graphene, a groundbreaking two-dimensional carbon nanomaterial, in enhancing solar cell performance. Objective: The primary aim is to elucidate how Graphene enhances the efficiency, stability, and durability of various solar cell technologies, particularly silicon-based systems. Methods: This review synthesizes recent research findings on Graphene's unique properties—such as electrical conductivity, transparency, mechanical strength, and chemical stability—and their applications in different solar cell types, including perovskite, quantum dot, hybrid, dye-sensitized, and organic solar cells. Results: The integration of Graphene has been shown to improve charge transport and collection efficiency. Its role as a transparent conductive layer, passivation layer, and charge transport layer has significantly enhanced the overall efficiency and longevity of silicon solar cells. Recent advancements highlight the potential of Graphene to address current limitations in silicon solar technologies, contributing to next-generation photovoltaic systems. Conclusion: Graphene emerges as a transformative material for enhancing solar cell efficiency and stability. Continued research is essential to overcome integration challenges and optimize Graphene's performance in solar applications, paving the way for more efficient and sustainable solar energy solutions.
Keywords: Graphene, Solar Cells, Renewable Energy, Photovoltaic Efficiency, Nanomaterials
References
Basore, P. A. (1994). Defining terms for crystalline silicon solar cells. Progress in Photovoltaics Research and Applications, 2(2), 177–179. https://doi.org/10.1002/pip.4670020213
Crystalline silicon photovoltaics research. (n.d.). Energy.gov. https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research
Cui, W., Chen, F., Li, Y., Su, X., & Sun, B. (2023). Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells. Materials Today Nano, 22, 100329. https://doi.org/10.1016/j.mtnano.2023.100329
Edwards, R. S., & Coleman, K. S. (2012). Graphene synthesis: Relationship to applications. Nanoscale, 5(1), 38–51. https://doi.org/10.1039/c2nr32629a
Fallahazad, P. (2023). Rational and key strategies toward enhancing the performance of graphene/silicon solar cells. Materials Advances, 4(8), 1876–1899. https://doi.org/10.1039/d2ma00955b
Fallahazad, P., Naderi, N., & Eshraghi, M. J. (2020). Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate. Journal of Alloys and Compounds, 834, 155123. https://doi.org/10.1016/j.jallcom.2020.155123
Feynman, R. (2018). There’s plenty of room at the bottom. In CRC Press eBooks (pp. 63–76). https://doi.org/10.1201/9780429500459-7
Gao, Q., Yan, J., Wan, L., Zhang, C., Wen, Z., Zhou, X., Li, H., Li, F., Chen, J., Guo, J., Song, D., Flavel, B. S., & Chen, J. (2022). High-efficiency graphene-oxide/silicon solar cells with an organic-passivated interface. Advanced Materials Interfaces, 9(24). https://doi.org/10.1002/admi.202201221
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
Geng, C., Chen, X., Li, S., Ding, Z., Ma, W., Qiu, J., Wang, Q., Yan, C., & Fan, H. (2021). Graphene Quantum dots open up new prospects for interfacial modifying in Graphene/Silicon Schottky barrier solar Cell. Energy Material Advances, 2021. https://doi.org/10.34133/2021/8481915
Hsu, C., Zhang, X., Zhao, M. J., Lin, H., Zhu, W., & Lien, S. (2019). Silicon heterojunction solar cells with p-type silicon carbon window layer. Crystals, 9(8), 402. https://doi.org/10.3390/cryst9080402
Landsberg, P. T., & Klimpke, C. (1977). Theory of the Schottky barrier solar cell. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 354(1676), 101–118. https://doi.org/10.1098/rspa.1977.0058
Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., & Wu, D. (2010). Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 22(25), 2743–2748. https://doi.org/10.1002/adma.200904383
Madurani, K. A., Suprapto, S., Machrita, N. I., Bahar, S. L., Illiya, W., & Kurniawan, F. (2020). Progress in graphene synthesis and its application: History, challenge, and the future outlook for research and industry. ECS Journal of Solid State Science and Technology, 9(9), 093013. https://doi.org/10.1149/2162-8777/abbb6f
Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & Khan, A. U. (2021). Graphene synthesis, characterization, and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163
Mohammad, A., & Mahjabeen, F. (2023, August 22). From silicon to sunlight: Exploring the evolution of solar cell materials. Jurnal Mahasiswa. https://jurnalmahasiswa.com/index.php/Jurihum/article/view/409
N, T. (1974). On the basic concept of “Nano-Technology.” CiNii Research. https://cir.nii.ac.jp/crid/1572261550373135488
Oni, A. M., Mohsin, A. S., Rahman, M. M., & Bhuian, M. B. H. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Reports, 11, 3345–3366. https://doi.org/10.1016/j.egyr.2024.03.007
Pastuszak, J., & Wegierek, P. (2022). Photovoltaic cell generations and current research directions for their development. Materials, 15(16), 5542. https://doi.org/10.3390/ma15165542
Riverola, A., Vossier, A., & Chemisana, D. (2019). Fundamentals of solar cells. In Elsevier eBooks (pp. 3–33). https://doi.org/10.1016/b978-0-12-813337-8.00001-1
Torres, I., Fernández, S., Fernández-Vallejo, M., Arnedo, I., & Gandía, J. J. (2021). Graphene-based electrodes for silicon heterojunction solar cell technology. Materials, 14(17), 4833. https://doi.org/10.3390/ma14174833
Urade, A. R., Lahiri, I., & Suresh, K. S. (2022). Graphene properties, synthesis, and applications: A review. JOM, 75(3), 614–630. https://doi.org/10.1007/s11837-022-05505-8
Wolf, E. L. (2014). Applications of graphene: An overview. Springer Science & Business Media.
Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., & Yamamoto, K. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5). https://doi.org/10.1038/nenergy.2017.32
Yuan, S., Cui, Y., Zhuang, Y., Chen, P., Hu, Y., Yang, B., Yu, Y., Ren, Y., Wang, W., Chen, W., Wan, Y., Hu, Z., & Chu, J. (2021). Passivated emitter and rear cell silicon solar cells with a front polysilicon passivating contacted selective emitter. Physica Status Solidi (RRL) - Rapid Research Letters, 15(7). https://doi.org/10.1002/pssr.202100057
Zanatta, A. (2022). The Shockley–Queisser limit and the conversion efficiency of silicon-based solar cells. Results in Optics, 9, 100320. https://doi.org/10.1016/j.rio.2022.100320
Zhang, Y., Tang, T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen, Y. R., & Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248), 820–823. https://doi.org/10.1038/nature08105
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/10.1002/adma.201001068
View Dimensions
View Altmetric
Save
Citation
View
Share