Biopharmaceuticals and medical sciences | Online ISSN 3064-9226
REVIEWS   (Open Access)

Epigenetic Modifications in Personalized Medicine: Advancing Targeted Therapies through Genomic Insights

Moushumi Afroza Mou 1*, Mimnu Tasnim 2

+ Author Affiliations

Journal of Precision Biosciences 5(1) 1-6 https://doi.org/10.25163/biosciences.515803

Submitted: 12 January 2023  Revised: 20 March 2023  Published: 22 March 2023 

Abstract

Background: Epigenetic modifications, such as non-coding RNA molecules, histone modifications, and DNA methylation, significantly impact an individual's health trajectory by regulating gene expression. Understanding these modifications offers unprecedented opportunities for precision medicine, allowing for more personalized healthcare strategies. Methods: This review explores the role of epigenetic changes in precision medicine, emphasizing the use of epigenetic biomarkers for disease diagnosis, prognosis, and treatment stratification. It examines their applications across various diseases, including cancer, neurodegenerative disorders, and cardiovascular conditions, and discusses the potential for tailoring interventions based on individual epigenetic profiles. Results: Epigenetic biomarkers have emerged as critical tools in precision medicine. For instance, specific DNA methylation patterns can distinguish between cancer subtypes and guide targeted therapies. Epigenetic signatures also enhance the prediction of medication responses and potential adverse effects, enabling more precise treatment strategies across diverse disease spectrums. Conclusion: Incorporating epigenetic data into precision medicine shifts healthcare away from a one-size-fits-all model toward individualized therapies. Although challenges such as standardization of methodologies and understanding the genetic-epigenetic interplay remain, the integration of epigenetic insights into clinical practice holds promise for revolutionizing personalized healthcare.

Keywords: Epigenetics, Precision Medicine, Dna Methylation, Histone Modifications, Personalized Healthcare.

References

Agrawal, K., Das, V., Vyas, P., & Hajdúch, M. (2018). Nucleosidic DNA demethylating epigenetic drugs–a comprehensive review from discovery to clinic. Pharmacology & therapeutics, 188, 45-79.

Amabile, A., Migliara, A., Capasso, P., Biffi, M., Cittaro, D., Naldini, L., & Lombardo, A. (2016). Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell, 167(1), 219-232.

Andrieu, G., Belkina, A. C., & Denis, G. V. (2016). Clinical trials for BET inhibitors run ahead of the science. Drug Discovery Today: Technologies, 19, 45-50.

Berdasco, M., & Esteller, M. (2019). Clinical epigenetics: seizing opportunities for translation. Nature Reviews Genetics, 20(2), 109-127.

Cavenagh, J. D., & Popat, R. (2018). Optimal management of histone deacetylase inhibitor-related adverse events in patients with multiple myeloma: a focus on panobinostat. Clinical Lymphoma Myeloma and Leukemia, 18(8), 501-507.

Chan-Penebre, E., Kuplast, K. G., Majer, C. R., Boriack-Sjodin, P. A., Wigle, T. J., Johnston, L. D., ... & Duncan, K. W. (2015). A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nature chemical biology, 11(6), 432-437.

Cheng, X., & Blumenthal, R. M. (2010). Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry, 49(14), 2999-3008.

Cochran, A. G., Conery, A. R., & Sims III, R. J. (2019). Bromodomains: a new target class for drug development. Nature Reviews Drug Discovery, 18(8), 609-628.

Corti, O., Lesage, S., & Brice, A. (2011). What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiological reviews.

Couzin-Frankel, J. (2010). NIH Wants to Hear About Genetic Tests. Science Insider.

Delgado-Morales, R., Agís-Balboa, R. C., Esteller, M., & Berdasco, M. (2017). Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clinical epigenetics, 9, 1-18.

Diesch, J., Zwick, A., Garz, A. K., Palau, A., Buschbeck, M., & Götze, K. S. (2016). A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clinical epigenetics, 8, 1-11.

Eich, M. L., Athar, M., Ferguson III, J. E., & Varambally, S. (2020). EZH2-targeted therapies in cancer: hype or a reality. Cancer research, 80(24), 5449-5458.

Feehley, T., O’Donnell, C. W., Mendlein, J., Karande, M., & McCauley, T. (2023). Drugging the epigenome in the age of precision medicine. Clinical Epigenetics, 15(1), 1-13.

Ganesan, A. (2016). Multitarget drugs: an epigenetic epiphany. ChemMedChem, 11(12), 1227-1241.

Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C., & Berdasco, M. (2019). The timeline of epigenetic drug discovery: from reality to dreams. Clinical epigenetics, 11, 1-17.

Gil, E. M. C. (2014). Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer treatment reviews, 40(7), 862-871.

Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., ... & Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442-451.

Gomes, A. R., Zhao, F., & Lam, E. W. (2013). Role and regulation of the forkhead transcription factors FOXO3a and FOXM1 in carcinogenesis and drug resistance. Chinese journal of cancer, 32(7), 365.

Halby, L., Menon, Y., Rilova, E., Pechalrieu, D., Masson, V., Faux, C., ... & Arimondo, P. B. (2017). Rational design of bisubstrate-type analogues as inhibitors of DNA methyltransferases in cancer cells. Journal of Medicinal Chemistry, 60(11), 4665-4679.

Hauser, A. T., Robaa, D., & Jung, M. (2018). Epigenetic small molecule modulators of histone and DNA methylation. Current Opinion in Chemical Biology, 45, 73-85.

Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., ... & Lumey, L. H. (2018). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences, 105(44), 17046-17049.

Hilton, I. B., D'ippolito, A. M., Vockley, C. M., Thakore, P. I., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature biotechnology, 33(5), 510-517.

Howell Jr, P. M., Liu, Z., & Khong, H. T. (2010). Demethylating agents in the treatment of cancer. Pharmaceuticals, 3(7), 2022-2044.

Issa, M. E., Takhsha, F. S., Chirumamilla, C. S., Perez-Novo, C., Vanden Berghe, W., & Cuendet, M. (2017). Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clinical Epigenetics, 9(1), 1-13.

Liu, X. S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., ... & Jaenisch, R. (2016). Editing DNA methylation in the mammalian genome. Cell, 167(1), 233-247.

Liu, X. S., Wu, H., Krzisch, M., Wu, X., Graef, J., Muffat, J., ... & Jaenisch, R. (2018). Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell, 172(5), 979-992.

Maes, T., Carceller, E., Salas, J., Ortega, A., & Buesa, C. (2015). Advances in the development of histone lysine demethylase inhibitors. Current opinion in pharmacology, 23, 52-60.

Marine, J. C. (2012). Spotlight on the role of COP1 in tumorigenesis. Nature Reviews Cancer, 12(7), 455-464.

McGowan, P. O., Sasaki, A., D'alessio, A. C., Dymov, S., Labonté, B., Szyf, M., ... & Meaney, M. J. (2019). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature neuroscience, 12(3), 342-348.

Morera, L., Lübbert, M., & Jung, M. (2016). Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clinical epigenetics, 8, 1-16.

Nuñez, J. K., Chen, J., Pommier, G. C., Cogan, J. Z., Replogle, J. M., Adriaens, C., ... & Weissman, J. S. (2021). Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 184(9), 2503-2519.

O’Geen, H., Bates, S. L., Carter, S. S., Nisson, K. A., Halmai, J., Fink, K. D., ... & Segal, D. J. (2019). Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics & chromatin, 12(1), 1-20.

O'Connell, M. J., Lavery, I., Yothers, G., Paik, S., Clark-Langone, K. M., Lopatin, M., ... & Wolmark, N. (2010). Relationship between tumor gene expression and recurrence in four independent studies of patients with stage II/III colon cancer treated with surgery alone or surgery plus adjuvant fluorouracil plus leucovorin. Journal of clinical oncology, 28(25), 3937.

O'Connor, O. A., Horwitz, S., Masszi, T., Van Hoof, A., Brown, P., Doorduijn, J., ... & Shustov, A. (2015). Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. Journal of Clinical Oncology, 33(23), 2492.

Okada, Y., & Yamaguchi, K. (2017). Epigenetic modifications and reprogramming in paternal pronucleus: sperm, preimplantation embryo, and beyond. Cellular and Molecular Life Sciences, 74, 1957-1967.

Piha-Paul, S. A., Hann, C. L., French, C. A., Cousin, S., Braña, I., Cassier, P. A., ... & Shapiro, G. I. (2020). Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectrum, 4(2), pkz093.

Prebet, T., Sun, Z., Figueroa, M. E., Ketterling, R., Melnick, A., Greenberg, P. L., ... & Tallman, M. S. (2014). Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. Journal of clinical oncology, 32(12), 1242.

Schuijers, J., Manteiga, J. C., Weintraub, A. S., Day, D. S., Zamudio, A. V., Hnisz, D., ... & Young, R. A. (2018). Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell reports, 23(2), 349-360.

Stein, E. M., Garcia-Manero, G., Rizzieri, D. A., Tibes, R., Berdeja, J. G., Savona, M. R., ... & Tallman, M. S. (2018). The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood, The Journal of the American Society of Hematology, 131(24), 2661-2669.

Stepper, P., Kungulovski, G., Jurkowska, R. Z., Chandra, T., Krueger, F., Reinhardt, R., ... & Jurkowski, T. P. (2017). Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic acids research, 45(4), 1703-1713.

Tarjan, D. R., Flavahan, W. A., & Bernstein, B. E. (2019). Epigenome editing strategies for the functional annotation of CTCF insulators. Nature communications, 10(1), 4258.

Thakore, P. I., D'ippolito, A. M., Song, L., Safi, A., Shivakumar, N. K., Kabadi, A. M., ... & Gersbach, C. A. (2015). Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature methods, 12(12), 1143-1149.

Thottassery, J. V., Sambandam, V., Allan, P. W., Maddry, J. A., Maxuitenko, Y. Y., Tiwari, K., ... & Parker, W. B. (2014). Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4′-thio-2′-deoxycytidine and 5-aza-4′-thio-2′-deoxycytidine. Cancer chemotherapy and pharmacology, 74, 291-302.

Wang, D., Tai, P. W., & Gao, G. (2019). Adeno-associated virus vector as a platform for gene therapy delivery. Nature reviews Drug discovery, 18(5), 358-378.

Winslow, R. (2011). Major shift in war on cancer. Wall Street Journal, 5.

Yan, M., & Liu, Q. Q. (2013). Targeted therapy: tailoring cancer treatment. Chinese journal of cancer, 32(7), 363.

Zeitler, B., Froelich, S., Marlen, K., Shivak, D. A., Yu, Q., Li, D., ... & Zhang, H. S. (2019). Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nature medicine, 25(7), 1131-1142.

Zhang, G., Smith, S. G., & Zhou, M. M. (2015). Discovery of chemical inhibitors of human bromodomains. Chemical reviews, 115(21), 11625-11668.

Ziegler, N., Raichur, S., Brunner, B., Hemmann, U., Stolte, M., Schwahn, U., ... & Bielohuby, M. (2020). Liver-specific knockdown of class IIa HDACs has limited efficacy on glucose metabolism but entails severe organ side effects in mice. Frontiers in Endocrinology, 11, 598

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
303
View
0
Share