Biopharmaceuticals and medical sciences | Online ISSN 3064-9226
RESEARCH ARTICLE   (Open Access)

Individualized Vaccine Development for Infectious Diseases

Md Mostafizur Rahman 1*, Md Abu Bakar Siddique 1, Moushumi Afroza Mou 1, Amatun Noor Prapty 1

+ Author Affiliations

Journal of Precision Biosciences 2(1) 1-11 https://doi.org/10.25163/biosciences.212024

Submitted: 14 February 2020  Revised: 27 April 2020  Published: 28 April 2020 

Abstract

Vaccination has significantly enhanced global health, improving the quality of life for humans and animals, reducing treatment costs, and saving countless lives. Traditional vaccines were developed empirically, often with limited understanding of their effects on the human immune system. However, several challenges have emerged, including concerns about immunological safety, the need for individualized vaccines, and issues related to pathogens with complex lifecycles and antigenic variability. These concerns highlight risks such as non-antigen-specific immune responses, which may lead to autoimmunity or vaccine allergies. To address these challenges, immunologists are exploring innovative approaches to vaccine design. Immunoinformatics has become a transformative tool, enabling a deeper understanding of viral pathophysiology, immune responses, computational vaccinology, and diagnostics. The role of immunoinformatics in infectious disease research depends on the computational methods applied, particularly those that analyze host-pathogen interactions. Additionally, bioinformatics techniques are being leveraged to identify gene targets for vaccine development, including integrating pregnant women into vaccine trials and programs more effectively. This review emphasizes the critical need for advancing experimental, computational, and hybrid approaches to study host-pathogen interactions and drive innovations in vaccine development.

Keywords: Immunoinformatics, Computational Vaccinology, Vaccine Design, Emerging Infections, Immune System.

References

Ali, S. A., Almofti, Y. A., & Abd-Elrahman, K. A. (2019). Immunoinformatics approach for multiepitopes vaccine prediction against glycoprotein B of avian infectious laryngotracheitis virus. Advances in Bioinformatics, 2019.

Anaya, J. M. (2013). Major histocompatibility complex: Antigen processing presentation: Chapter 10. In Autoimmunity. From Bench to Bedside (pp. 169-184). Universidad del Rosario.

Auladell, M., Jia, X., Hensen, L., Chua, B., Fox, A., Nguyen, T. H., ... & Kedzierska, K. (2019). Recalling the future: immunological memory toward unpredictable influenza viruses. Frontiers in immunology, 10, 1400.

Berical, A. C., Harris, D., Dela Cruz, C. S., & Possick, J. D. (2016). Pneumococcal vaccination strategies. An update and perspective. Annals of the American Thoracic Society, 13(6), 933-944.

Buhler, S., & Sanchez-Mazas, A. (2011). HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PloS one, 6(2), e14643.

Chandra, H., & Yadav, J. S. (2016). Human leukocyte antigen (HLA)-binding epitopes dataset for the newly identified T-cell antigens of Mycobacterium immunogenum. Data in brief, 8, 1069-1071.

Collineau, L., Boerlin, P., Carson, C. A., Chapman, B., Fazil, A., Hetman, B., ... & Smith, B. A. (2019). Integrating whole-genome sequencing data into quantitative risk assessment of foodborne antimicrobial resistance: a review of opportunities and challenges. Frontiers in Microbiology, 10, 1107.

Crux, N. B., & Elahi, S. (2017). Human leukocyte antigen (HLA) and immune regulation: how do classical and non-classical HLA alleles modulate immune response to human immunodeficiency virus and hepatitis C virus infections?. Frontiers in immunology, 8, 832.

Fischinger, S., Boudreau, C. M., Butler, A. L., Streeck, H., & Alter, G. (2019, March). Sex differences in vaccine-induced humoral immunity. In Seminars in immunopathology (Vol. 41, pp. 239-249). Springer Berlin Heidelberg.

Fonseca, L. L., Joyner, C. J., MaHPIC Consortium, Galinski, M. R., & Voit, E. O. (2017). A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malaria Journal, 16, 1-11

Furman, D., & Davis, M. M. (2015). New approaches to understanding the immune response to vaccination and infection. Vaccine, 33(40), 5271-5281.

Gfeller, D., & Bassani-Sternberg, M. (2018). Predicting antigen presentation—what could we learn from a million peptides?. Frontiers in immunology, 9, 1716.

Giacomet, V., Masetti, M., Nannini, P., Forlanini, F., Clerici, M., Zuccotti, G. V., & Trabattoni, D. (2018). Humoral and cell-mediated immune responses after a booster dose of HBV vaccine in HIV-infected children, adolescents and young adults. PloS one, 13(2), e0192638.

Hossain, M. U., Omar, T. M., Oany, A. R., Kibria, K. K., Shibly, A. Z., Moniruzzaman, M., ... & Islam, M. M. (2018). Design of peptide-based epitope vaccine and further binding site scrutiny led to groundswell in drug discovery against Lassa virus. 3 Biotech, 8, 1-14.

Kaifu, T., & Nakamura, A. (2017). Polymorphisms of immunoglobulin receptors and the effects on clinical outcome in cancer immunotherapy and other immune diseases: a general review. International Immunology, 29(7), 319-325.

Kaliamurthi, S., Selvaraj, G., Kaushik, A. C., Gu, K. R., & Wei, D. Q. (2018). Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biologics: Targets and Therapy, 107-125.

Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific reports, 7(1), 8285.

Kim, H. I., Ha, N. Y., Kim, G., Min, C. K., Kim, Y., Yen, N. T. H., ... & Cho, N. H. (2019). Immunization with a recombinant antigen composed of conserved blocks from TSA56 provides broad genotype protection against scrub typhus. Emerging Microbes & Infections, 8(1), 946-958.

Lamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., & Tufféry, P. (2016). PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic acids research, 44(W1), W449-W454.

Leventhal, G. E., Hill, A. L., Nowak, M. A., & Bonhoeffer, S. (2015). Evolution and emergence of infectious diseases in theoretical and real-world networks. Nature communications, 6(1), 6101.

Lindahl, J. F., & Grace, D. (2015). The consequences of human actions on risks for infectious diseases: a review. Infection ecology & epidemiology, 5(1), 30048.

Lundegaard, C., Lund, O., Buus, S., & Nielsen, M. (2010). Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology, 130(3), 309-318.

Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in bioinformatics, 19(2), 286-302.

Miller, S. E., Bell, C. S., McClain, M. S., Cover, T. L., & Giorgio, T. D. (2016). Dynamic computational model of symptomatic bacteremia to inform bacterial separation treatment requirements. PLoS One, 11(9), e0163167.

Moise, L., Gutierrez, A., Kibria, F., Martin, R., Tassone, R., Liu, R., ... & De Groot, A. S. (2015). iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Human vaccines & immunotherapeutics, 11(9), 2312-2321.

Molineros, J. E., Looger, L. L., Kim, K., Okada, Y., Terao, C., Sun, C., ... & Nath, S. K. (2019). Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS genetics, 15(4), e1008092.

Munang’andu, H. M., Mutoloki, S., & Evensen, Ø. (2015). A review of the immunological mechanisms following mucosal vaccination of finfish. Frontiers in immunology, 6, 427.

Nii-Trebi, N. I. (2017). Emerging and neglected infectious diseases: insights, advances, and challenges. BioMed research international, 2017.

Nikolich-Žugich, J. (2018). The twilight of immunity: emerging concepts in aging of the immune system. Nature immunology, 19(1), 10-19.

Odimegwu, D. C., Onah, A. I., Ifudu, F., & Oli, A. N. (2019). Evaluation of levamisole as an adjuvant for typhoid fever vaccine formulation. PhOL, 2, 336-346.

Oli, A. N., Obialor, W. O., Ifeanyichukwu, M. O., Odimegwu, D. C., Okoyeh, J. N., Emechebe, G. O., ... & Ibeanu, G. C. (2020). Immunoinformatics and vaccine development: an overview. ImmunoTargets and therapy, 13-30.

Palm, A. K. E., & Henry, C. (2019). Remembrance of things past: long-term B cell memory after infection and vaccination. Frontiers in immunology, 10, 1787.

Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., Xiong, F., ... & Zeng, Z. (2019). Neoantigen vaccine: an emerging tumor immunotherapy. Molecular cancer, 18(1), 1-14.

Piasecka, B., Duffy, D., Urrutia, A., Quach, H., Patin, E., Posseme, C., ... & Milieu Intérieur Consortium. (2018). Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proceedings of the National Academy of Sciences, 115(3), E488-E497.

Pritam, M., Singh, G., Swaroop, S., Singh, A. K., & Singh, S. P. (2019). Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC bioinformatics, 19, 219-230.

Rappuoli, R., Bottomley, M. J., D’Oro, U., Finco, O., & De Gregorio, E. (2016). Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. Journal of Experimental Medicine, 213(4), 469-481.

Rauch, S., Jasny, E., Schmidt, K. E., & Petsch, B. (2018). New vaccine technologies to combat outbreak situations. Frontiers in immunology, 9, 1963.

Richner, J. M., Jagger, B. W., Shan, C., Fontes, C. R., Dowd, K. A., Cao, B., ... & Diamond, M. S. (2017). Vaccine mediated protection against Zika virus-induced congenital disease. Cell, 170(2), 273-283.

Rizwan, M., Naz, A., Ahmad, J., Naz, K., Obaid, A., Parveen, T., ... & Ali, A. (2017). VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology. BMC bioinformatics, 18(1), 1-7.

Rodrigues, T. C. V., Jaiswal, A. K., de Sarom, A., de Castro Oliveira, L., Oliveira, C. J. F., Ghosh, P., ... & de Castro Soares, S. (2019). Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: a causative agent of pneumonia. Royal Society Open Science, 6(7).

Saadi, M., Karkhah, A., & Nouri, H. R. (2017). Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infection, Genetics and Evolution, 51, 227-234.

Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T-and B-cell epitope prediction. Journal of immunology research, 2017.

Sarkander, J., Hojyo, S., & Tokoyoda, K. (2016). Vaccination to gain humoral immune memory. Clinical & translational immunology, 5(12), e120.

Servín-Blanco, R., Zamora-Alvarado, R., Gevorkian, G., & Manoutcharian, K. (2016). Antigenic variability: obstacles on the road to vaccines against traditionally difficult targets. Human vaccines & immunotherapeutics, 12(10), 2640-2648.

Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological reviews, 66(1), 334-395.

Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., & Rosales-Mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of biomedical informatics, 53, 405-414.

Wallis, J., Shenton, D. P., & Carlisle, R. C. (2019). Novel approaches for the design, delivery and administration of vaccine technologies. Clinical & Experimental Immunology, 196(2), 189-204.

Wang, Y. (2018). Development of a human leukocyte antigen-based HIV vaccine. F1000Research, 7.

Xiang, Z., & He, Y. (2013). Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC bioinformatics, 14(4), 1-10.

Zheng, J., Lin, X., Wang, X., Zheng, L., Lan, S., Jin, S., ... & Wu, J. (2017). In silico analysis of epitope-based vaccine candidates against hepatitis B virus polymerase protein. Viruses, 9(5), 112.

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



1
Save
0
Citation
59
View
0
Share