Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
REVIEWS   (Open Access)

Enhancing Silicon Solar Cell Efficiency through Graphene Integration: A Review of Recent Advances

Uma Harikrishnan 1*

+ Author Affiliations

Biosensors and Nanotheranostics 1(1) 1-8 https://doi.org/10.25163/biosensors.117341

Submitted: 04 October 2022  Revised: 19 December 2022  Published: 23 December 2022 

This review underscores graphene's transformative potential in improving silicon solar cell efficiency, crucial for advancing renewable energy technologies and sustainability.

Abstract


Background: Solar cells play a crucial role in renewable energy, contributing to sustainable development and a clean environment. This review investigates the integration of Graphene, a groundbreaking two-dimensional carbon nanomaterial, in enhancing solar cell performance. Objective: The primary aim is to elucidate how Graphene enhances the efficiency, stability, and durability of various solar cell technologies, particularly silicon-based systems. Methods: This review synthesizes recent research findings on Graphene's unique properties—such as electrical conductivity, transparency, mechanical strength, and chemical stability—and their applications in different solar cell types, including perovskite, quantum dot, hybrid, dye-sensitized, and organic solar cells. Results: The integration of Graphene has been shown to improve charge transport and collection efficiency. Its role as a transparent conductive layer, passivation layer, and charge transport layer has significantly enhanced the overall efficiency and longevity of silicon solar cells. Recent advancements highlight the potential of Graphene to address current limitations in silicon solar technologies, contributing to next-generation photovoltaic systems. Conclusion: Graphene emerges as a transformative material for enhancing solar cell efficiency and stability. Continued research is essential to overcome integration challenges and optimize Graphene's performance in solar applications, paving the way for more efficient and sustainable solar energy solutions.

Keywords: Graphene, Solar Cells, Renewable Energy, Photovoltaic Efficiency, Nanomaterials

References


Basore, P. A. (1994). Defining terms for crystalline silicon solar cells. Progress in Photovoltaics Research and Applications, 2(2), 177–179. https://doi.org/10.1002/pip.4670020213

Crystalline silicon photovoltaics research. (n.d.). Energy.gov. https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research

Cui, W., Chen, F., Li, Y., Su, X., & Sun, B. (2023). Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells. Materials Today Nano, 22, 100329. https://doi.org/10.1016/j.mtnano.2023.100329

Edwards, R. S., & Coleman, K. S. (2012). Graphene synthesis: Relationship to applications. Nanoscale, 5(1), 38–51. https://doi.org/10.1039/c2nr32629a

Fallahazad, P. (2023). Rational and key strategies toward enhancing the performance of graphene/silicon solar cells. Materials Advances, 4(8), 1876–1899. https://doi.org/10.1039/d2ma00955b

Fallahazad, P., Naderi, N., & Eshraghi, M. J. (2020). Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate. Journal of Alloys and Compounds, 834, 155123. https://doi.org/10.1016/j.jallcom.2020.155123

Feynman, R. (2018). There’s plenty of room at the bottom. In CRC Press eBooks (pp. 63–76). https://doi.org/10.1201/9780429500459-7

Gao, Q., Yan, J., Wan, L., Zhang, C., Wen, Z., Zhou, X., Li, H., Li, F., Chen, J., Guo, J., Song, D., Flavel, B. S., & Chen, J. (2022). High-efficiency graphene-oxide/silicon solar cells with an organic-passivated interface. Advanced Materials Interfaces, 9(24). https://doi.org/10.1002/admi.202201221

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849

Geng, C., Chen, X., Li, S., Ding, Z., Ma, W., Qiu, J., Wang, Q., Yan, C., & Fan, H. (2021). Graphene Quantum dots open up new prospects for interfacial modifying in Graphene/Silicon Schottky barrier solar Cell. Energy Material Advances, 2021. https://doi.org/10.34133/2021/8481915

Hsu, C., Zhang, X., Zhao, M. J., Lin, H., Zhu, W., & Lien, S. (2019). Silicon heterojunction solar cells with p-type silicon carbon window layer. Crystals, 9(8), 402. https://doi.org/10.3390/cryst9080402

Landsberg, P. T., & Klimpke, C. (1977). Theory of the Schottky barrier solar cell. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 354(1676), 101–118. https://doi.org/10.1098/rspa.1977.0058

Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., & Wu, D. (2010). Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 22(25), 2743–2748. https://doi.org/10.1002/adma.200904383

Madurani, K. A., Suprapto, S., Machrita, N. I., Bahar, S. L., Illiya, W., & Kurniawan, F. (2020). Progress in graphene synthesis and its application: History, challenge, and the future outlook for research and industry. ECS Journal of Solid State Science and Technology, 9(9), 093013. https://doi.org/10.1149/2162-8777/abbb6f

Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & Khan, A. U. (2021). Graphene synthesis, characterization, and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163

Mohammad, A., & Mahjabeen, F. (2023, August 22). From silicon to sunlight: Exploring the evolution of solar cell materials. Jurnal Mahasiswa. https://jurnalmahasiswa.com/index.php/Jurihum/article/view/409

N, T. (1974). On the basic concept of “Nano-Technology.” CiNii Research. https://cir.nii.ac.jp/crid/1572261550373135488

Oni, A. M., Mohsin, A. S., Rahman, M. M., & Bhuian, M. B. H. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. Energy Reports, 11, 3345–3366. https://doi.org/10.1016/j.egyr.2024.03.007

Pastuszak, J., & Wegierek, P. (2022). Photovoltaic cell generations and current research directions for their development. Materials, 15(16), 5542. https://doi.org/10.3390/ma15165542

Riverola, A., Vossier, A., & Chemisana, D. (2019). Fundamentals of solar cells. In Elsevier eBooks (pp. 3–33). https://doi.org/10.1016/b978-0-12-813337-8.00001-1

Torres, I., Fernández, S., Fernández-Vallejo, M., Arnedo, I., & Gandía, J. J. (2021). Graphene-based electrodes for silicon heterojunction solar cell technology. Materials, 14(17), 4833. https://doi.org/10.3390/ma14174833

Urade, A. R., Lahiri, I., & Suresh, K. S. (2022). Graphene properties, synthesis, and applications: A review. JOM, 75(3), 614–630. https://doi.org/10.1007/s11837-022-05505-8

Wolf, E. L. (2014). Applications of graphene: An overview. Springer Science & Business Media.

Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., & Yamamoto, K. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5). https://doi.org/10.1038/nenergy.2017.32

Yuan, S., Cui, Y., Zhuang, Y., Chen, P., Hu, Y., Yang, B., Yu, Y., Ren, Y., Wang, W., Chen, W., Wan, Y., Hu, Z., & Chu, J. (2021). Passivated emitter and rear cell silicon solar cells with a front polysilicon passivating contacted selective emitter. Physica Status Solidi (RRL) - Rapid Research Letters, 15(7). https://doi.org/10.1002/pssr.202100057

Zanatta, A. (2022). The Shockley–Queisser limit and the conversion efficiency of silicon-based solar cells. Results in Optics, 9, 100320. https://doi.org/10.1016/j.rio.2022.100320

Zhang, Y., Tang, T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen, Y. R., & Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248), 820–823. https://doi.org/10.1038/nature08105

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924. https://doi.org/10.1002/adma.201001068

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
242
View
0
Share