Micelle-Assisted Synthesis of Quantum Dot Arrays. A Nanoreactor Approach for ZnO and ZnS Nanoparticles
Mourtas Spyridon 1*
Biosensors and Nanotheranostics 1(1) 1-7 https://doi.org/10.25163/biosensors.119897
Submitted: 04 October 2022 Revised: 05 December 2022 Published: 20 December 2022
This study determined nanoparticle synthesis via micelles for biofunctionalization, optimizing conditions for stable quantum dot arrays.
Abstract
Background. Quantum dots (QDs) are nanoscale semiconductor particles with unique optical and electronic properties, making them suitable for biomedical imaging, drug delivery, and biosensing applications. However, controlling their size and stability in physiological environments remains a challenge. This study investigated the use of polymeric micelles to encapsulate QDs and synthesize ZnO and ZnS nanoparticles to form nanoparticle arrays for biofunctionalization purposes. Methods. Micelle solutions were prepared using polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymers. ZnO and ZnS nanoparticles were synthesized in situ by loading zinc precursors (ZnAc, ZnCl2) into the micelles, followed by oxidation using tetramethylammonium hydroxide (TMA-OH) and sodium oxide (Na2O). The nanoparticles were characterized by Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and UV-Vis spectroscopy. Results. Uniform micelles with sizes ranging from 70-120 nm were successfully formed. ZnO nanoparticles (50-80 nm) displayed strong UV absorption at 370 nm, confirming the synthesis. ZnS nanoparticles (60 nm) were synthesized using Na2S•9H2O, exhibiting a UV absorption peak at 290 nm. Ex situ synthesis on silicon substrates using oxygen plasma produced well-ordered nanoparticle arrays. Conclusion. Polymeric micelles effectively served as nanoreactors for ZnO and ZnS nanoparticle synthesis. The choice of zinc precursor and oxidizing agent influenced particle size and uniformity. Ex situ techniques demonstrated potential for nanopatterning applications. Future work could focus on scaling up and adapting this method to other metal oxide and sulfide systems for advanced material design.
Keywords. Quantum Dots, Peptides, ZnO Nanoparticles, ZnS Nanoparticles, Micelle Synthesis
References
Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22(1), 47–52.
Anikeeva, N., Lebedeva, T., Clapp, A. R., Goldman, E. R., Dustin, M. L., Mattoussi, H., & Sykulev, Y. (2006). Quantum dot/peptide-MHC biosensors reveal strong CD8- dependent cooperation between self and viral antigens that augment the T cell response. Proceedings of the National Academy of Sciences, 103(45), 16846–16851.
Arnold, M., Cavalcanti-Adam, E. A., Glass, R., Blümmel, J., Eck, W., & Kantlehner, M., et al. (2004). Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem, 5(3), 383–388.
Cavalcanti-Adam, E. A., Micoulet, A., Blümmel, J., Auernheimer, J., Kessler, H., & Spatz, J. P. (2006). Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. European Journal of Cell Biology, 85(3–4), 219–224.
Chen, L., Xu, J., Holmes, J. D., & Morris, M. A. (2010). A facile route to ZnO nanoparticle superlattices. Synthesis, functionalization, and self-assembly. Journal of Physical Chemistry C, 114(5), 2003–2011.
El-Atwani, O., Aytun, T., Mutaf, O. F., Srot, V., van Aken, P. A., & Ow-Yang, C. W. (2010). Determining the morphology of polystyrene-block-poly(2-vinylpyridine) micellar reactors for ZnO nanoparticle synthesis. Langmuir, 26(10), 7431–7436.
Farzaneh, F., & Hamedani, N. F. (2006). Synthesis of ZnO nanocrystals with hexagonal (Wurtzite) structure in water using microwave irradiation. Journal of Sciences, Islamic Republic of Iran, 17(3). Retrieved July 11, 2012, from http.//journals.ut.ac.ir/page/article-frame.html?langId=en&articleId=1002741
Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22(8), 969–976.
Hines, M. A., & Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry, 100(2), 468–471.
Kjærgaard, K., Sørensen, J. K., Schembri, M. A., & Klemm, P. (2000). Sequestration of zinc oxide by fimbrial designer chelators. Applied and Environmental Microbiology, 66(1), 10–14.
Matko, J., Bushkin, Y., Wei, T., & Edidin, M. (1994). Clustering of class I HLA molecules on the surfaces of activated and transformed human cells. Journal of Immunology, 152(7), 3353–3360.
Moffitt, M., & Eisenberg, A. (1995). Size control of nanoparticles in semiconductor- polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers. Chemistry of Materials, 7(6), 1178–1184.
Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19), 8706–8715.
Nanda, J., Sapra, S., Sarma, D. D., Chandrasekharan, N., & Hodes, G. (2000). Size- selected zinc sulfide nanocrystallites. Synthesis, structure, and optical studies. Chemistry of Materials, 12(4), 1018–1024.
Nanotechnology Reviews, 6(4), 403-415. https.//doi.org/10.1515/ntrev-2017-0102
Qu, L., & Peng, X. (2002). Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 124(9), 2049–2055.
Riley, J. (2018). Photoelectrochemistry of CdS multilayers. [Unpublished MSc Thesis]. University of Oxford.
Skaff, H., & Coughlin, E. B. (2002). Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. Journal of the American Chemical Society, 124, 5729.
Skaff, H., & Emrick, T. (2003). The use of 4-substituted pyridines to afford amphiphilic, pegylated cadmium selenide nanoparticles. Chemical Communications, 2003(1), 52– 53.
Smith, T. (2017). Dynamic light scattering in nanomaterial characterization.
Song, Z., Kelf, T. A., Sanchez, W. H., Roberts, M. S., Ricka, J., Frenz, M., et al. (2011). Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical Optics Express, 2(12), 3321–3333.
Tomczak, N., Janczewski, D., Han, M., & Vancso, G. J. (2009). Designer polymer– quantum dot architectures. Progress in Polymer Science, 34(5), 393–430.
Wang, X., Du, Y., Ding, S., Wang, Q., Xiong, G., & Xie, M., et al. (2006). Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films. Journal of Physical Chemistry B, 110(4), 1566–1570.
Wikipedia contributors. (2012). Quantum dot. Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. Retrieved September 2, 2012, from http.//en.wikipedia.org/w/index.php?title=Quantum_dot&oldid=508668703
Wiley InterScience.
Williams, K. A., & Hunt, H. D. (2015). The synthesis and applications of ZnO nanoparticles. Nanoscience and Nanotechnology Letters, 4(5), 348-360. https.//doi.org/10.1142/S1793292015500041
Wolfram, T., Belz, F., Schoen, T., & Spatz, J. (2007). Site-specific presentation of single recombinant proteins in defined nanoarrays. Biointerphases, 2(1), 44–48.
Wu, Z., Zhao, Y., Qiu, F., Li, Y., Wang, S., Yang, B., et al. (2009). Forming water- soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 350(1–3), 121–129.
Zhao, H., Douglas, E. P., Harrison, B. S., & Schanze, K. S. (2001). Preparation of CdS nanoparticles in salt-induced block copolymer micelles. Langmuir, 17(26), 8428–8433.
Zhou, M., & Ghosh, I. (2006). Quantum dots and peptides. A bright future together.
View Dimensions
View Altmetric
Save
Citation
View
Share