Advances in Herbal Research | online ISSN 2209-1890
REVIEWS   (Open Access)

Innovations in Cancer Research and Treatment

Md Shamsuddin Sultan Khan 1*, Tufael 2

+ Author Affiliations

Australian Herbal Insight 7(1) 1-12 https://doi.org/10.25163/ahi.7120050

Submitted: 05 January 2024  Revised: 20 February 2024  Published: 23 February 2024 

Investigation into targeted therapy innovations and personalized medicine provides valuable insights for enhancing cancer treatment efficacy and mitigating its global impact.

Abstract


Cancer remains a significant global health challenge, with rising incidence rates projected in the coming years. This study delves into the dynamic field of cancer therapy, particularly focusing on targeted modalities such as immunotherapy, cancer vaccines, and stem cell-based treatments. Emphasizing the importance of personalized medicine, we explore how tailored approaches can enhance patient outcomes and alleviate the burden of cancer. Examining recent advancements in targeted therapy, including monoclonal antibodies and immune checkpoint inhibitors, we showcase the transformative potential of precision oncology in reshaping cancer care. Tackling hurdles like treatment resistance and equitable access to novel therapies, we outline future research avenues. Through an interdisciplinary lens integrating genetics, immunology, and therapeutic innovation, we aspire to advance toward a future where cancer no longer poses a pervasive threat to global health.

Keywords: Cancer therapy, targeted therapy, immunotherapy, personalized medicine, precision oncology.

References


Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Carvalho, S., ... & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5, 4006.

Ardila, D., et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954-961

Arthur, J. C., et al. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 338(6103), 120-123.

Azuaje, F. (2019). Computational models for predicting drug responses in cancer research. Briefings in Bioinformatics, 20(2), 450-459.

Baylin, S. B., & Jones, P. A. (2016). Epigenetic therapy: a new weapon in the war against cancer. The Journal of Clinical Investigation, 126(6), 2160-2169.

Boldrini, L., et al. (2019). Artificial intelligence and radiomics in oncology: A user’s guide. La Radiologia Medica, 124(6), 512-532.

Calin, G. A., & Croce, C. M. (2016). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857-866.

Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., ... & McArthur, G. A. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364(26), 2507-2516.

Ching, T., et al. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), 20170387.

Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R. R., & Fu, Y. X. (2014). Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. Journal of Clinical Investigation, 124(2), 687-695.

Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., ... & Sawyers, C. L. (2011). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New England Journal of Medicine, 344(14), 1031-1037.

Esteva, A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

Ferrara, N., Hillan, K. J., Gerber, H. P., & Novotny, W. (2014). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature reviews Drug discovery, 3(5), 391-400.

Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., ... & Weber, J. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. New England Journal of Medicine, 367(18), 1694-1703.

Flavahan, W. A., Gaskell, E., & Bernstein, B. E. (2017). Epigenetic plasticity and the hallmarks of cancer. Science, 357(6348), eaal2380.

Gandhi, L., Rodríguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F., ... & KEYNOTE-189 Investigators. (2018). Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. New England Journal of Medicine, 378(22), 2078-2092.

Garzon, R., Calin, G. A., & Croce, C. M. (2010). MicroRNAs in Cancer. Annual Review of Medicine, 60(1), 167-179.

Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563-577.

Gopalakrishnan, V., et al. (2018). Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 359(6371), 97-103.

Greer, E. L., & Shi, Y. (2012). Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 13(5), 343-357.

Hegde, P. S., & Chen, D. S. (2020). Top 10 challenges in cancer immunotherapy. Immunity, 52(1), 17-35.

Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: an overview. Cancers, 6(3), 1769-1792.

Huang, Y., Zhang, J., Hou, L., & Wang, G. (2021). The role of DNA methylation in the development and treatment of cancer. Aging and Disease, 12(6), 1696-1712.

Jin, H., Wang, L., & Bernards, R. (2023). Rational combinations of targeted cancer therapies: background, advances and challenges. Nature Reviews Drug Discovery, 22(3), 213-234.

Jones, P. A., & Baylin, S. B. (2017). The epigenomics of cancer. Cell, 128(4), 683-692.

Keefe, D. M., & Bateman, E. H. (2019). Potential successes and challenges of targeted cancer therapies. JNCI Monographs, 2019(53), lgz008.

Kizub, D. A., Naik, S., Abogan, A. A., Pain, D., Sammut, S., Shulman, L. N., & Martei, Y. M. (2022). Access to and Affordability of world health organization essential medicines for cancer in sub-Saharan Africa: examples from Kenya, Rwanda, and Uganda. The oncologist, 27(11), 958-970.

Kourou, K., et al. (2015). Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal, 13, 8-17.

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G., Granton, P., ... & Dekker, A. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4), 441-446.

Lawler, M., Davies, L., Oberst, S., Oliver, K., Eggermont, A., Schmutz, A., ... & Sullivan, R. (2023). European Groundshot—addressing Europe's cancer research challenges: a Lancet Oncology Commission. The Lancet Oncology, 24(1), e11-e56.

Liu, Y., et al. (2018). An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 173(2), 400-416.

Lu, C. Y., Terry, V., & Thomas, D. M. (2023). Precision medicine: affording the successes of science. NPJ Precision Oncology, 7(1), 3.

Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., ... & Haber, D. A. (2014). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129-2139.

Marks, P. A. (2010). The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opinion on Investigational Drugs, 19(9), 1049-1066.

Mullard, A. (2020). Stemming the tide of drug resistance in cancer. Nature reviews Drug discovery, 19(4), 221-224.

Paez, J. G., et al. (2014). EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. Science.

Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature reviews cancer, 12(4), 252-264.

Parmar, C., Grossmann, P., Rietveld, D., Rietbergen, M. M., Lambin, P., & Aerts, H. J. (2015). Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Frontiers in Oncology, 5, 272.

Pitt, J. M., Marabelle, A., Eggermont, A., Soria, J.-C., Kroemer, G., & Zitvogel, L. (2019). Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Annals of Oncology, 30(6), 1010–1022.

Roy, S., & Trinchieri, G. (2017). Microbiota: a key orchestrator of cancer therapy. Nature Reviews Cancer, 17(5), 271-285.

Sawyers, C. (2014). Targeted cancer therapy. Nature, 432(7015), 294-297.

Sawyers, C. L., Abate-Shen, C., Anderson, K. C., Barker, A., Baselga, J., Berger, N. A., … & Weiner, G. J. (2013). AACR cancer progress report 2013. Clinical cancer research, 19(20_Supplement), S1-S98.

Sharabi, A. B., Lim, M., DeWeese, T. L., & Drake, C. G. (2015). Radiation and checkpoint blockade immunotherapy: radiosensitization and potential mechanisms of synergy. The Lancet Oncology, 16(13), e498-e509.

Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., ... & Settleman, J. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69-80.

Swanton, C. (2012). Intratumor heterogeneity: evolution through space and time. Cancer research, 72(19), 4875-4882.

Tilg, H., et al. (2020). The intestinal microbiota in colorectal cancer. Cancer Cell, 33(6), 954-964.

Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., ... & Sznol, M. (2012). Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. New England Journal of Medicine, 366(26), 2443-2454.

Wang, Y., et al. (2019). Fecal microbiota transplantation for refractory immune checkpoint inhibitor–associated colitis. Nature Medicine, 25(8), 1234-1236.

Weissleder, R., & Pittet, M. J. (2008). Imaging in the era of molecular oncology. Nature.

Wolf, A., Oeffinger, K. C., Shih, T. Y. C., Walter, L. C., Church, T. R., Fontham, E. T., ... & Smith, R. A. (2023). Screening for lung cancer: 2023 guideline update from the American Cancer Society. CA: A Cancer Journal for Clinicians.

Yang, A. S., Doshi, K. D., Choi, S. W., Mason, J. B., Mannari, R. K., Gharybian, V., ... & Jones, P. A. (2010). DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Research, 66(10), 5495-5503.

Yip, S. S., & Aerts, H. J. (2016). Applications and limitations of radiomics. Physics in Medicine & Biology, 61(13), R150.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
126
View
0
Share