Smart Textiles with Integrated Biosensors for Real-time Health Monitoring
Hilal Ahmad Rather 1*, Mohd Arif Dar 2
Biosensors and Nanotheranostics 3(1) 1-9 https://doi.org/10.25163/biosensors.317337
Submitted: 13 January 2024 Revised: 11 February 2024 Published: 13 February 2024
Integrating biosensors into smart textiles revolutionizes health monitoring, offering real-time, unobtrusive data collection for proactive healthcare management.
Abstract
Background: The advent of wearable technology has paved the way for smart textiles, which integrate biosensors into the fabric itself. This integration enhances comfort, continuous monitoring, and data accuracy, transforming the fabric into a second skin. These smart textiles can monitor vital signs, metabolic markers, and environmental pollutants in real-time, providing valuable health insights and environmental data. Methods: This review explores the materials, types of biosensors, and methods used to integrate them into textiles. It examines various bioreceptors, such as enzymes, antibodies, and nucleic acids, and their specific applications in biosensing. The study also discusses physicochemical detectors, including electrochemical, optical, and piezoelectric sensors, and their signal transduction mechanisms. Results: Smart textiles equipped with biosensors demonstrate significant potential in real-time health monitoring and environmental sensing. Vital signs, glucose, lactate, pathogens, and pollutants can be effectively monitored using these textiles. The integration techniques, such as weaving, knitting, and printing technologies, ensure seamless blending of biosensors with the fabric. The incorporation of advanced materials like graphene and carbon nanotubes enhances the conductivity and sensing capabilities of these textiles. Conclusion: Smart textiles with integrated biosensors represent a significant advancement in healthcare and environmental monitoring. They offer real-time, continuous, and non-invasive monitoring capabilities, transforming how individuals manage their health and how environmental data is collected. Despite challenges such as biocompatibility, durability, and cost, ongoing research and development promise to address these issues, paving the way for widespread adoption and innovation in this field.
Keywords: Smart textiles, Biosensors, Health monitoring, Environmental sensing, Wearable technology
References
Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning techniques for biomedical applications. Polymer, 49(26), 5603–5621. https://doi.org/10.1016/j.polymer.2008.09.014. Alamer, F. A., & Almalki, G. A. (2022). Fabrication of conductive fabrics based on SWCNTs, MWCNTs and graphene and their applications: a review. Polymers, 14(24), 5376. https://doi.org/10.3390/polym14245376
Ali, N., El-Khatib, E., & Bassyouni, F. (2022). Utilization and characterization of natural products pretreatment and dyeing wool fabric by natural dyes with economical methods. Journal of Textile Engineering & Fashion Technology, 8(6), 178–183. https://doi.org/10.15406/jteft.2022.08.00319
Bahin, L., Tourlonias, M., Bueno, M., Sharma, K., & Rossi, R. M. (2023). Smart textiles with polymer optical fibre implementation for in-situ measurements of compression and bending. Sensors and Actuators A: Physical, 350, 114117. https://doi.org/10.1016/j.sna.2022.114117
Cherenack, K., & Van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9). https://doi.org/10.1063/1.4742728.
Crivelli, B., Perteghella, S., Bari, E., Sorrenti, M., Chlapanidas, T., & Torre, M. L. (2018). Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. Soft Matter, 14(4), 546–557. https://doi.org/10.1039/c7sm01631j.
De Kok, M., De Vries, H., Pacheco, K., & Van Heck, G. (2015). Failure modes of conducting yarns in electronic-textile applications. Textile Research Journal, 85(16), 1749–1760. https://doi.org/10.1177/0040517515573405
Denmark, D. J., Mohapatra, S., & Mohapatra, S. S. (2020). Point-of-Care diagnostics: Molecularly imprinted polymers and nanomaterials for enhanced biosensor selectivity and transduction. The Eurobiotech Journal, 4(4), 184–206. https://doi.org/10.2478/ebtj-2020-0023
Ding, Y., Dong, H., Cao, J., Zhang, Z., Chen, R., Wang, Y., Li, H., Yan, J., & Liao, Y. (2023). A polyester/spandex blend fabrics-based e-textile for strain sensor, joule heater and energy storage applications. Composites Part A: Applied Science and Manufacturing, 175, 107779.
https://doi.org/10.1016/j.compositesa.2023.107779
Dulal, M., Afroj, S., Ahn, J., Cho, Y., Carr, C., Kim, I., & Karim, N. (2022). Toward sustainable wearable electronic textiles. ACS Nano, 16(12), 19755–19788. https://doi.org/10.1021/acsnano.2c07723
Emrizal, N., Zain, Z. H. M., & Heah, K. G. (2023). The biosensor application in cancer detections: A review. Asia-pacific Journal of Molecular Biology and Biotechnology, 62–70. https://doi.org/10.35118/apjmbb.2023.031.2.05
Ferrer-Vilanova, A., Alonso, Y., Dietvorst, J., Pérez-Montero, M., Rodríguez-Rodríguez, R., Ivanova, K., Tzanov, T., Vigués, N., Mas, J., Guirado, G., & Muñoz-Berbel, X. (2021). Sonochemical coating of Prussian Blue for the production of smart bacterial-sensing hospital textiles. Ultrasonics Sonochemistry, 70, 105317. https://doi.org/10.1016/j.ultsonch.2020.105317
Guignier, Claire, Brigitte Camillieri, Michel Schmid, René M. Rossi, and Marie-Ange Bueno. 2019. "E-Knitted Textile with Polymer Optical Fibers for Friction and Pressure Monitoring in Socks" Sensors 19, no. 13: 3011. https://doi.org/10.3390/s19133011
Jiang, Q., Qian, Y., Ma, J., Ma, X., Cheng, Q., & Wei, F. (2018). User centric three-factor authentication protocol for cloud-assisted wearable devices. International Journal of Communication Systems, 32(6). https://doi.org/10.1002/dac.3900
Joyce, K. (2019). Smart textiles: transforming the practice of medicalisation and health care. Sociology of Health and Illness, 41(S1), 147–161. https://doi.org/10.1111/1467-9566.12871
Karamchand, L., Makeiff, D., Gao, Y., Azyat, K., Serpe, M. J., & Kulka, M. (2023). Biomaterial inks and bioinks for fabricating 3D biomimetic lung tissue: A delicate balancing act between biocompatibility and mechanical printability. Bioprinting, 29, e00255. https://doi.org/10.1016/j.bprint.2022.e00255
Koncar, V. (2016). Introduction to smart textiles and their applications. In Elsevier eBooks (pp. 1–8). https://doi.org/10.1016/b978-0-08-100574-3.00001-1
Koydemir, H. C., & Ozcan, A. (2018). Wearable and implantable sensors for biomedical applications. Annual Review of Analytical Chemistry, 11(1), 127–146. https://doi.org/10.1146/annurev-anchem-061417-125956
Lee, Ka-Po, Joanne Yip, Kit-Lun Yick, Chao Lu, Linyue Lu, and Qi-Wen Emma Lei. 2023.
"A Novel Force-Sensing Smart Textile: Inserting Silicone-Embedded FBG Sensors into a Knitted Undergarment" Sensors 23, no. 11: 5145. https://doi.org/10.3390/s23115145
Li, S. (2023). Review on development and application of 4D-printing technology in smart textiles. Journal of Engineered Fibers and Fabrics, 18, 155892502311774. https://doi.org/10.1177/15589250231177448
Libertino, S., Plutino, M. R., & Rosace, G. (2018). Design and development of wearable sensing nanomaterials for smart textiles. AIP Conference Proceedings. https://doi.org/10.1063/1.5047770
Lin, F., Wang, A., Zhuang, Y., Tomita, M., & Xu, W. (2016). Smart Insole: a wearable sensor device for unobtrusive GAIT monitoring in daily life. IEEE Transactions on Industrial Informatics, 12(6), 2281–2291. https://doi.org/10.1109/tii.2016.2585643
Malucelli, G., Bosco, F., Alongi, J., Carosio, F., Di Blasio, A., Mollea, C., Cuttica, F., & Casale, A. (2014). Biomacromolecules as novel green flame retardant systems for textiles: an overview. RSC Advances, 4(86), 46024–46039. https://doi.org/10.1039/c4ra06771a
Mehrotra, P. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6(2), 153–159.https://doi.org/10.1016/j.jobcr.2015.12.002
Mukhopadhyay, S. C. (2015). Wearable Sensors for Human Activity Monitoring: A review. IEEE Sensors Journal, 15(3), 1321–1330. https://doi.org/10.1109/jsen.2014.2370945
Narayanaswamy, R. (1993). Tutorial review—Optical chemical sensors: transduction and signal processing. Analyst, 118(4), 317–322. https://doi.org/10.1039/an9931800317
Park, J., Lee, Y., Cho, S., Choe, A., Yeom, J., Ro, Y. G., Kim, J., Kang, D., Lee, S., & Ko, H. (2024). Soft sensors and actuators for wearable Human–Machine interfaces. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.3c00356
Pasche, S., Schyrr, B., Wenger, B., Scolan, E., Ischer, R., & Voirin, G. (2012). Smart Textiles with Biosensing Capabilities. Advances in Science and Technology. https://doi.org/10.4028/www.scientific.net/ast.80.129
Ponmozhi, J., Frias, C., Marques, A., & Frazão, O. (2012). Smart sensors/actuators for biomedical applications: Review. Measurement, 45(7), 1675–1688. https://doi.org/10.1016/j.measurement.2012.02.006
Schügerl, K., Hitzmann, B., Jürgens, H., Kullick, T., Ulber, R., & Weigal, B. (1996). Challenges in integrating biosensors and FIA for on-line monitoring and control. Trends in Biotechnology, 14(1), 21–31. https://doi.org/10.1016/0167-7799(96)80910-3
Shawan, M. S. I., Kawser, M. A., Zohra, F. T., Das, S., & Ali, M. H. (2023). Recent advancements in modern antenna design for wearable devices. Journal of Artificial Intelligence Machine Learning and Neural Network, 35, 14–27. https://doi.org/10.55529/jaimlnn.35.14.27
Sinha, A., Dhanjai, Stavrakis, A. K., & Stojanovic, G. M. (2022). Textile-based electrochemical sensors and their applications. Talanta, 244, 123425. https://doi.org/10.1016/j.talanta.2022.123425
Sonawane, A., Manickam, P., & Bhansali, S. (2017). Stability of enzymatic biosensors for wearable applications. IEEE Reviews in Biomedical Engineering, 10, 174–186. https://doi.org/10.1109/rbme.2017.2706661
Stoppa, M., & Chiolerio, A. (2014a). Wearable Electronics and Smart Textiles: A Critical review. Sensors, 14(7), 11957–11992. https://doi.org/10.3390/s140711957
Stoppa, M., & Chiolerio, A. (2014b). Wearable Electronics and Smart Textiles: A Critical review. Sensors, 14(7), 11957–11992. https://doi.org/10.3390/s140711957
Su, Y., Chen, C., Pan, H., Yang, Y., Chen, G., Zhao, X., Li, W., Gong, Q., Xie, G., Zhou, Y., Zhang, S., Tai, H., Jiang, Y., & Chen, J. (2021). Muscle fibers inspired High-Performance piezoelectric textiles for wearable physiological monitoring. Advanced Functional Materials, 31(19). https://doi.org/10.1002/adfm.202010962
Takita, S., Nabok, A., Lishchuk, A., Mussa, M. H., & Smith, D. P. (2023). Enhanced performance Electrochemical biosensor for detection of prostate cancer biomarker PCA3 using specific Aptamer. Eng, 4(1), 367–379. https://doi.org/10.3390/eng4010022
Tang, S. L. P., & Stylios, G. K. (2006). An overview of smart technologies for clothing design and engineering. International Journal of Clothing Science and Technology, 18(2), 108–128. https://doi.org/10.1108/09556220610645766
Tröster, G. (2005). The agenda of wearable healthcare. Yearbook of Medical Informatics, 14(01), 125–138. https://doi.org/10.1055/s-0038-1638446
Velasco-Garcia, M. N., & Mottram, T. (2003). Biosensor Technology addressing Agricultural Problems. Biosystems Engineering, 84(1), 1–12. https://doi.org/10.1016/s1537-5110(02)00236-2
Victorious, A., Saha, S., Pandey, R., Didar, T. F., & Soleymani, L. (2019). Affinity-Based detection of biomolecules using Photo-Electrochemical readout. Frontiers in Chemistry, 7. https://doi.org/10.3389/fchem.2019.00617
Wang, H., Zhang, Y., Liang, X., & Zhang, M. (2021). Smart fibers and textiles for personal health management. ACS Nano, 15(8), 12497–12508. https://doi.org/10.1021/acsnano.1c06230
Windmiller, J. R., & Wang, J. (2012). Wearable Electrochemical Sensors and Biosensors: A review. Electroanalysis, 25(1), 29–46. https://doi.org/10.1002/elan.201200349
Zang, Y., Zhang, F., Di, C., & Zhu, D. (2015). Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2(2), 140–156. https://doi.org/10.1039/c4mh00147h
Zhao, Y., Zhai, Q., Dong, D., An, T., Gong, S., Shi, Q., & Cheng, W. (2019). Highly stretchable and Strain-Insensitive Fiber-Based wearable electrochemical biosensor to monitor glucose in the sweat. Analytical Chemistry, 91(10), 6569–6576. https://doi.org/10.1021/acs.analchem.9b00152
Zhou, J., Guo, Y., Wang, Y., Ji, Z., Zhang, Q., Zhuo, F., Luo, J., Tao, R., Xie, J., Reboud, J., McHale, G., Dong, S., Luo, J., Duan, H., & Fu, Y. Q. (2023). Flexible and wearable acoustic wave technologies. Applied Physics Reviews, 10(2). https://doi.org/10.1063/5.0142470
View Dimensions
View Altmetric
Save
Citation
View
Share