References
Adler-Milstein, J., Chen, J. H., & Dhaliwal, G. (2021). Next-generation artificial intelligence for diagnosis: From predicting diagnostic labels to "wayfinding." JAMA. https://doi.org/10.1001/jama.2021.22396
Adnan, M. M., et al. (2021). Automatic image annotation based on deep learning models: A systematic review and future challenges. IEEE Access, 9, 50253–50264. IEEE. https://doi.org/10.1109/ACCESS.2021.3068897
Ahmad, Z., Rahim, S., Zubair, M., & Abdul-Ghafar, J. (2021). Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: Present and future impact. Diagnostic Pathology. Springer. https://doi.org/10.1186/s13000-021-01085-4
Akhtar, Z. B. (2024). Exploring Biomedical Engineering (BME): Advances within accelerated computing and regenerative medicine for a computational and medical science. J Emerg Med OA. Opast.
Amirahmadi, A., Ohlsson, M., & Etminani, K. (2023). Deep learning prediction models based on EHR trajectories: A systematic review. Journal of Biomedical Informatics. ScienceDirect. https://doi.org/10.1016/j.jbi.2023.104430
Bruni, D., Angell, H. K., & Galon, J. (2020). The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nature Reviews Cancer. https://doi.org/10.1038/s41568-020-0285-7
Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review. https://doi.org/10.1016/j.cosrev.2021.100379
Górriz, J. M., et al. (2020). Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing, 410, 237–270. ScienceDirect. https://doi.org/10.1016/j.neucom.2020.05.078
Gruson, D., Bernardini, S., Dabla, P. K., & Gouget, B. (2020). Collaborative AI and laboratory medicine integration in precision cardiovascular medicine. Clinica Chimica Acta. https://doi.org/10.1016/j.cca.2020.06.001
Hassani, H., et al. (2020). Artificial intelligence (AI) or intelligence augmentation (IA): What is the future? AI, 1(2), 8. MDPI. https://doi.org/10.3390/ai1020008
Haymond, S., & McCudden, C. (2021). Rise of the machines: Artificial intelligence and the clinical laboratory. The Journal of Applied Laboratory Medicine, 6(6), 1640–1654. https://doi.org/10.1093/jalm/jfab075
Honkala, A., et al. (2022). Harnessing the predictive power of preclinical models for oncology drug development. Nature Reviews Drug Discovery, 21(2), 99–114. https://doi.org/10.1038/s41573-021-00301-6
Hussain, S., et al. (2022). Modern diagnostic imaging technique applications and risk factors in the medical field: A review. BioMed Research International, 2022(1), 5164970. Wiley. https://doi.org/10.1155/2022/5164970
Jakhar, D., & Kaur, I. (2020). Artificial intelligence, machine learning and deep learning: Definitions and differences. Clinical and Experimental Dermatology. https://doi.org/10.1111/ced.14029
Joshi, G., et al. (2024). FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices: An updated landscape. Electronics, 13(3), 498. MDPI. https://doi.org/10.3390/electronics13030498
Moosavinasab, S., et al. (2021). DeepSuggest: Using neural networks to suggest related keywords for a comprehensive search of clinical notes. ACI Open, 5(1), e1–e12. Thieme. https://doi.org/10.1055/s-0041-1729982
Schuett, J. (2024). Risk management in the artificial intelligence act. European Journal of Risk Regulation. Cambridge. https://doi.org/10.1017/err.2023.1
Xu, Q., et al. (2023). Interpretability of clinical decision support systems based on artificial intelligence from technological and medical perspective: A systematic review. Journal of Healthcare Engineering, 2023(1), 9919269. Wiley. https://doi.org/10.1155/2023/9919269
Yanamala, A. K. Y., & Suryadevara, S. (2024). Navigating data protection challenges in the era of artificial intelligence: A comprehensive review. Revista de Inteligencia Artificial en Medicina, 15(1), 113–146. https://doi.org/10.4236/ojbm.2025.132037