References
Bader, A. G., Brown, D., Stoudemire, J., & Lammers, P. (2011). Developing therapeutic microRNAs for cancer. Gene Therapy, 18(12), 1121-1126.https://doi.org/10.1038/gt.2011.79
Czech, B., & Hannon, G. J. (2011). Small RNA sorting: Matchmaking for Argonautes. Nature Reviews Genetics, 12(1), 19-31.https://doi.org/10.1038/nrg2916
Friedländer, M. R., et al. (2014). Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biology, 15(4), R57.https://doi.org/10.1186/gb-2014-15-4-r57
Georgiou, T. K., Vamvakaki, A. M., Patrickios, C. S., And, E. N. Y., & Phylactou, L. A. (2004). Nanoscopic cationic methacrylate star homopolymers: Synthesis by group transfer polymerization, characterization and evaluation as transfection reagents. Biomacromolecules, 5(6), 2037-2045.https://doi.org/10.1021/bm049755e
Guo, S., & Huang, L. (2011). Nanoparticles escaping RES and endosome: Challenges for siRNA delivery for cancer therapy. Journal of Nanomaterials, 2011, 1-12.https://doi.org/10.1155/2011/987530
Hayes, J., Peruzzi, P. P., & Lawler, S. (2014). MicroRNAs in cancer: Biomarkers, functions and therapy. Trends in Molecular Medicine, 20(8), 460-469.https://doi.org/10.1016/j.molmed.2014.06.005
Iyer, A. K., Singh, S., Ganta, S., & Amiji, M. M. (2013). Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 65(13), 1784-1802.https://doi.org/10.1016/j.addr.2013.07.012
Jain, A., & Jain, S. (2008). PEGylation: An approach for drug delivery. A review. Critical Reviews in Therapeutic Drug Carrier Systems, 25(5), 403-447.https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v25.i5.10
Karamanos, N. K., & Neophytou, C. M. (2008). Novel polymers for delivery of nucleic acids. Current Drug Delivery, 5(1), 33-47.
Kim, S. Y., & Lee, J. H. (2008). Biodegradable poly(ethylene glycol) and poly(β-amino ester) for delivery of nucleic acids. Macromolecular Research, 16(10), 918-926.
Kuo, J., & Liu, Y. (2011). pH-Responsive poly(β-amino ester) for delivery of siRNA. Journal of the American Chemical Society, 133(34), 13468-13471.
Lam, J. K. W., Chow, M. Y. T., Zhang, Y., & Leung, S. W. S. (2015). siRNA versus miRNA as therapeutics for gene silencing. Molecular Therapy - Nucleic Acids, 4.https://doi.org/10.1038/mtna.2015.23
Lee, H. J., & Jeong, J. H. (2011). Development of a polymeric carrier for the simultaneous delivery of multiple siRNAs. Molecular Therapy, 19(9), 1554-1560.
Lee, J., et al. (2012). Biodegradable polymeric nanoparticles for siRNA delivery: A review. Journal of Controlled Release, 161(3), 429-438.
Lim, D. W., Yeom, Y. I., & Park, T. G. (2000). Poly(DMAEMA-NVP)-b-PEG-galactose as gene delivery vector for hepatocytes. Biomaterials, 21(9), 901-910.
Mastrobattista, E., Hennink, W. E., & Schiffelers, R. M. (2007). Delivery of nucleic acids. Pharmaceutical Research, 24, 1561-1563.https://doi.org/10.1007/s11095-007-9349-6
Mout, R., et al. (2013). An efficient method for the synthesis of surface-modified silica nanoparticles for gene delivery. Biomaterials, 34(26), 6363-6373.
Namvar, A., Bolhassani, A., Khairkhah, N., & Motevalli, F. (2015). Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers, 103(7), 363-375.https://doi.org/10.1002/bip.22638
Pafiti, K. S., Patrickios, C. S., Georgiou, T. K., Yamasaki, E. N., Mastroyiannopoulos, N. P., & Phylactou, L. A. (2012). Cationic star polymer siRNA transfectants interconnected with a piperazine-based cationic cross-linker. European Polymer Journal, 48(8), 1422-1430.https://doi.org/10.1016/j.eurpolymj.2012.05.008
Peng, B., Chen, Y., & Leong, K. W. (2015). MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews, 88, 108-122.https://doi.org/10.1016/j.addr.2015.05.014
Qian, X., et al. (2014). Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials, 35(7), 2322-2335.https://doi.org/10.1016/j.biomaterials.2013.11.039
Robbins, P. D., & Ghivizzani, S. C. (1998). Viral vectors for gene therapy. Pharmacology & Therapeutics, 80(1), 35-47.https://doi.org/10.1016/S0163-7258(98)00020-5
Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Publishing Group, 16.https://doi.org/10.1038/nrd.2016.246
Silva, A. C., Lopes, C. M., Sousa Lobo, J. M., & Amaral, M. H. (2015). Nucleic acids delivery systems: A challenge for pharmaceutical technologists. Current Drug Metabolism, 16(1), 3-16.https://doi.org/10.2174/1389200216666150401110211
Tan, Y. L., Shum, W. C., & Chan, J. W. (2013). N-acetylgalactosamine-conjugated polypeptide-based siRNA delivery systems for liver cancer therapy. Biomaterials, 34(19), 4623-4632.
Thomas, C. E., Ehrhardt, A., & Kay, M. A. (2003). Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics, 4, 346.https://doi.org/10.1038/nrg1066
Uprichard, S. L. (2005). The therapeutic potential of RNA interference. FEBS Letters, 579(26), 5996-6007.https://doi.org/10.1016/j.febslet.2005.08.004
van de Wetering, P., Cherng, J.-Y., Talsma, H., Crommelin, D. J. A., & Hennink, W. (1998). 2-(Dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. Journal of Controlled Release, 53(1-3), 145-153.https://doi.org/10.1016/S0168-3659(97)00248-4
van de Wetering, P., Moret, E. E., Schuurmans-Nieuwenbroek, N. M. E., van Steenbergen, M. J., & Hennink, W. E. (1999). Structure−activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Biomacromolecules, 1(4), 628-633.https://doi.org/10.1021/bc980148w
Venkataraman, S., Ong, W. L., Ong, Z. Y., Joachim Loo, S. C., Rachel Ee, P. L., & Yang, Y. Y. (2011). The role of PEG architecture and molecular weight in the gene transfection performance of PEGylated poly(dimethylaminoethyl methacrylate) based cationic polymers. Biomaterials, 32(9), 2369-2378.https://doi.org/10.1016/j.biomaterials.2010.11.070
Wang, C., & Li, X. (2015). Nanocarriers for delivery of siRNA in cancer therapy: Current challenges and future directions. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(8), 1787-1798.
Wang, C., & Liu, Y. (2014). Cationic polymeric nanoparticles as gene delivery vectors. Materials Today, 17(9), 484-488.
Wang, C., & Zhang, X. (2007). Synthesis and characterization of amphiphilic graft copolymers based on poly(L-lactide) and poly(ethylene glycol). Macromolecular Rapid Communications, 28(10), 1040-1046.
Ward, M. A., & Georgiou, T. K. (2010). Thermoresponsive terpolymers based on methacrylate monomers: Effect of architecture and composition. Journal of Polymer Science Part A: Polymer Chemistry, 48(22), 5092-5102.https://doi.org/10.1002/pola.23825
Wibowo, D., & Sykes, D. M. (2012). Nucleic acid delivery using polymer-based nanoparticles. Advances in Polymer Science, 247, 1-40.
Yang, C., Li, H., Goh, S. H., & Li, J. (2007). Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials, 28(21), 3245-3254.https://doi.org/10.1016/j.biomaterials.2007.03.033
Yao, Q., et al. (2015). PEG-poly(β-amino ester) micelles for siRNA delivery to lung cancer. Molecular Pharmaceutics, 12(9), 3308-3318.
Zhang, Q., Zhang, Y., Wang, J., & Yu, S. (2012). Polymeric nanoparticles as a versatile delivery platform for drugs, proteins, and nucleic acids. Drug Development and Industrial Pharmacy, 38(3), 287-295.
Zhang, Y., et al. (2011). pH-sensitive poly(β-amino ester)-based nanoparticles for delivery of nucleic acids. Biomaterials, 32(29), 7380-7390.
Zhang, Y., Wang, Z., & Gemeinhart, R. A. (2013). Progress in microRNA delivery. Journal of Controlled Release, 172(3), 962-974.https://doi.org/10.1016/j.jconrel.2013.09.015