References
Anderson, D. M., Reguera, B., Pitcher, G. C., & Enevoldsen, H. O. (2020). The IOC International Harmful Algal Bloom Program: History and science impacts. Oceanography, 23(3), 72-85. doi:https://doi.org/10.5670/oceanog.2010.25.
Birch, J. R., & Racher, A. J. (2006). Antibody production. Advanced drug delivery reviews, 58(5), 671-685.
Eissa, S., Siaj, M., & Zourob, M. (2015). Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron, 69, 148-154. doi:10.1016/j.bios.2015.01.055
Farid, S. S. (2007). Process economics of industrial monoclonal antibody manufacture. Journal of Chromatography B, 848(1), 8-18.
Hallengraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79-99.
Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., . . . Gunn, L. C. (2010). Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. Selected Topics in Quantum Electronics, IEEE Journal of, 16(3), 654-661.
Kashfia, H., & Ajeet, K. (2023). Development of Wearable Biosensors for Continuous Monitoring of Neurological Biomarkers. Biosensors and Nanotheranostics, 2(1). doi:10.25163/biosensors.217330
Kim, Y. S., & Gu, M. B. (2014). Advances in aptamer screening and small molecule aptasensors. Adv Biochem Eng Biotechnol, 140, 29-67. doi:10.1007/10_2013_225
Kreuzer, M. P., Pravda, M., O'Sullivan, C. K., & Guilbault, G. G. (2002). Novel electrochemical immunosensors for seafood toxin analysis. Toxicon, 40(9), 1267-1274. doi:10.1016/s0041-0101(02)00132-0
Kumar, N., Rana, M., Geiwitz, M., Khan, N. I., Catalano, M., Ortiz-Marquez, J. C., . . . Burch, K. S. (2022). Rapid, Multianalyte Detection of Opioid Metabolites in Wastewater. ACS nano, 16(3), 3704-3714. doi:10.1021/acsnano.1c07094
Li, X., Zhao, Q., & Qiu, L. (2013). Smart ligand: Aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. Journal of Controlled Release, 171(2), 152-162. doi:http://dx.doi.org/10.1016/j.jconrel.2013.06.006
Liu, J., & Lu, Y. (2006). Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols, 1(1), 246-252. doi:10.1038/nprot.2006.38
Muhit, R., Kashfia, H., & Dong-Jin, L. (2023). Nanoparticle-Enhanced Drug Delivery Systems for Targeted Cancer Therapy. Biosensors and Nanotheranostics, 2(1). doi:10.25163/biosensors.217332
Naar, J., Branaa, P., Bottein-Dechraoui, M. Y., Chinain, M., & Pauillac, S. (2001). Polyclonal and monoclonal antibodies to PbTx-2-type brevetoxins using minute amount of hapten–protein conjugates obtained in a reversed micellar medium. Toxicon, 39(6), 869-878. doi:http://dx.doi.org/10.1016/S0041-0101(00)00226-9
Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1-15. doi:http://dx.doi.org/10.1016/j.jab.2013.02.001
Pierce, R. H., Henry, M. S., Blum, P. C., Hammel, S. L., Kirkpatrick, B., Cheng, Y. S., . . . Baden, D. G. (2005). Brevetoxin composition in wtaer and marine aerosol along a Florida beach: Assessing potential human exposure to marine biotoxins. Harmful Algae, 4(6), 965-972. doi:https://doi.org/10.1016/j.hal.2004.11.004
Plakas, S. M., & Dickey, R. W. (2010). Advances in monitoring and toxicity assessment of brevetoxins in molluscan shellfish. Toxicon, 56(2), 137-149. doi:10.1016/j.toxicon.2009.11.007
Posthuma-Trumpie, G. A., Korf, J., & van Amerongen, A. (2009). Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem, 393(2), 569-582. doi:10.1007/s00216-008-2287-2
Radom, F., Jurek, P. M., Mazurek, M. P., Otlewski, J., & Jelen, F. (2013). Aptamers: Molecules of great potential. Biotechnology Advances, 31(8), 1260-1274. doi:http://dx.doi.org/10.1016/j.biotechadv.2013.04.007
Rana, M., Balcioglu, M., Kovach, M., Hizir, M. S., Robertson, N. M., Khan, I., & Yigit, M. V. (2016). Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chemical Communications, 52(17), 3524-3527. doi:10.1039/C5CC09910B
Rana, M., Balcioglu, M., Robertson, N. M., Hizir, M. S., Yumak, S., & Yigit, M. V. (2017). Low picomolar, instrument-free visual detection of mercury and silver ions using low-cost programmable nanoprobes. Chemical Science, 8(2), 1200-1208. doi:10.1039/C6SC03444F
Rana, M., Yildirim, N., Ward, N. E., Vega, S. P., Heffernan, M. J., & Argun, A. A. (2023). Highly Specific Detection of Oxytocin in Saliva. International Journal of Molecular Sciences, 24(5), 4832. Retrieved from https://www.mdpi.com/1422-0067/24/5/4832
Sharma, T. K., & Shukla, R. (2014). Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens. Advances in Animal and Veterinary Sciences, 2(1), 50-55.
Šmuc, T., Ahn, I.-Y., & Ulrich, H. (2013). Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. Journal of Pharmaceutical and Biomedical Analysis, 81–82, 210-217. doi:http://dx.doi.org/10.1016/j.jpba.2013.03.014
Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: recommended definitions and classification1. Biosensors and Bioelectronics, 16(1–2), 121-131. doi:http://dx.doi.org/10.1016/S0956-5663(01)00115-4
Tisone, T. C., & O’Farrell, B. (2009). Manufacturing the next generation of highly sensitive and reproducible lateral flow immunoassay: Springer.
Vilarino, N., Fonfria, E. S., Louzao, M. C., & Botana, L. M. (2009). Use of biosensors as alternatives to current regulatory methods for marine biotoxins. Sensors (Basel), 9(11), 9414-9443. doi:10.3390/s91109414
Xu, D.-X., Vachon, M., Densmore, A., Ma, R., Janz, S., Delâge, A., . . . Post, E. (2010). Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. Opt Express, 18(22), 22867-22879.