Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
RESEARCH ARTICLE   (Open Access)

Rapid and Low-Cost Field Toxin Analysis to Monitor Harmful Algal Blooms

Muhit Rana 1#, Andrew Weber 1#, Meredith Stewart 1, Avni A Argun 1*

+ Author Affiliations

Biosensors and Nanotheranostics 4 (1) 1-10 https://doi.org/10.25163/biosciences.4110099

Submitted: 08 October 2024 Revised: 29 January 2025  Published: 30 January 2025 


5836.jpg?638720979215170463

Abstract

Background: Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis produce brevetoxins that represent significant threats to human health, marine ecology, and the economy. Detecting brevetoxin toxicity, which exists at very low levels, is challenging with current methods, limiting effective monitoring and management. Objective: To develop a sensitive, portable, and cost-effective method for the rapid, on-site detection of brevetoxins in seawater to support public safety, fisheries, and coastal management efforts. Methods: We designed a handheld portable device, the GinerSTAT, for electrochemical detection of brevetoxin-2 (PbTx-2) and brevetoxin-3 (PbTx-3) in seawater samples. The device utilizes specific electrodes to achieve high sensitivity and specificity, with detection limits reaching parts per billion. The entire sample collection and analysis process is completed within 10 minutes. Results: The GinerSTAT demonstrated robust performance in detecting brevetoxins in seawater, offering rapid results with high accuracy. The device is compact, user-friendly, and affordable, with an estimated cost below $500. These attributes make it a practical tool for field-based monitoring of HABs. Conclusion: The GinerSTAT offers a groundbreaking approach to brevetoxin detection, enabling real-time, low-cost monitoring of harmful marine toxins. This innovation has significant implications for enhancing public safety, preserving marine ecosystems, and supporting the marine economy.

Keywords: Harmful Algal Blooms, Brevetoxin Detection, Electrochemical Device, Marine Monitoring, Portable Sensor, Electrochemical Sensor.

References


Anderson, D. M., Reguera, B., Pitcher, G. C., & Enevoldsen, H. O. (2020). The IOC International Harmful Algal Bloom Program: History and science impacts. Oceanography, 23(3), 72-85. doi:https://doi.org/10.5670/oceanog.2010.25.

Birch, J. R., & Racher, A. J. (2006). Antibody production. Advanced drug delivery reviews, 58(5), 671-685.

Eissa, S., Siaj, M., & Zourob, M. (2015). Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron, 69, 148-154. doi:10.1016/j.bios.2015.01.055

Farid, S. S. (2007). Process economics of industrial monoclonal antibody manufacture. Journal of Chromatography B, 848(1), 8-18.

Hallengraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79-99.

Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., . . . Gunn, L. C. (2010). Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. Selected Topics in Quantum Electronics, IEEE Journal of, 16(3), 654-661.

Kashfia, H., & Ajeet, K. (2023). Development of Wearable Biosensors for Continuous Monitoring of Neurological Biomarkers. Biosensors and Nanotheranostics, 2(1). doi:10.25163/biosensors.217330

Kim, Y. S., & Gu, M. B. (2014). Advances in aptamer screening and small molecule aptasensors. Adv Biochem Eng Biotechnol, 140, 29-67. doi:10.1007/10_2013_225

Kreuzer, M. P., Pravda, M., O'Sullivan, C. K., & Guilbault, G. G. (2002). Novel electrochemical immunosensors for seafood toxin analysis. Toxicon, 40(9), 1267-1274. doi:10.1016/s0041-0101(02)00132-0

Kumar, N., Rana, M., Geiwitz, M., Khan, N. I., Catalano, M., Ortiz-Marquez, J. C., . . . Burch, K. S. (2022). Rapid, Multianalyte Detection of Opioid Metabolites in Wastewater. ACS nano, 16(3), 3704-3714. doi:10.1021/acsnano.1c07094

Li, X., Zhao, Q., & Qiu, L. (2013). Smart ligand: Aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. Journal of Controlled Release, 171(2), 152-162. doi:http://dx.doi.org/10.1016/j.jconrel.2013.06.006

Liu, J., & Lu, Y. (2006). Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols, 1(1), 246-252. doi:10.1038/nprot.2006.38

Muhit, R., Kashfia, H., & Dong-Jin, L. (2023). Nanoparticle-Enhanced Drug Delivery Systems for Targeted Cancer Therapy. Biosensors and Nanotheranostics, 2(1). doi:10.25163/biosensors.217332

Naar, J., Branaa, P., Bottein-Dechraoui, M. Y., Chinain, M., & Pauillac, S. (2001). Polyclonal and monoclonal antibodies to PbTx-2-type brevetoxins using minute amount of hapten–protein conjugates obtained in a reversed micellar medium. Toxicon, 39(6), 869-878. doi:http://dx.doi.org/10.1016/S0041-0101(00)00226-9

Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1-15. doi:http://dx.doi.org/10.1016/j.jab.2013.02.001

Pierce, R. H., Henry, M. S., Blum, P. C., Hammel, S. L., Kirkpatrick, B., Cheng, Y. S., . . . Baden, D. G. (2005). Brevetoxin composition in wtaer and marine aerosol along a Florida beach: Assessing potential human exposure to marine biotoxins. Harmful Algae, 4(6), 965-972. doi:https://doi.org/10.1016/j.hal.2004.11.004

Plakas, S. M., & Dickey, R. W. (2010). Advances in monitoring and toxicity assessment of brevetoxins in molluscan shellfish. Toxicon, 56(2), 137-149. doi:10.1016/j.toxicon.2009.11.007

Posthuma-Trumpie, G. A., Korf, J., & van Amerongen, A. (2009). Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem, 393(2), 569-582. doi:10.1007/s00216-008-2287-2

Radom, F., Jurek, P. M., Mazurek, M. P., Otlewski, J., & Jelen, F. (2013). Aptamers: Molecules of great potential. Biotechnology Advances, 31(8), 1260-1274. doi:http://dx.doi.org/10.1016/j.biotechadv.2013.04.007

Rana, M., Balcioglu, M., Kovach, M., Hizir, M. S., Robertson, N. M., Khan, I., & Yigit, M. V. (2016). Reprogrammable multiplexed detection of circulating oncomiRs using hybridization chain reaction. Chemical Communications, 52(17), 3524-3527. doi:10.1039/C5CC09910B

Rana, M., Balcioglu, M., Robertson, N. M., Hizir, M. S., Yumak, S., & Yigit, M. V. (2017). Low picomolar, instrument-free visual detection of mercury and silver ions using low-cost programmable nanoprobes. Chemical Science, 8(2), 1200-1208. doi:10.1039/C6SC03444F

Rana, M., Yildirim, N., Ward, N. E., Vega, S. P., Heffernan, M. J., & Argun, A. A. (2023). Highly Specific Detection of Oxytocin in Saliva. International Journal of Molecular Sciences, 24(5), 4832. Retrieved from https://www.mdpi.com/1422-0067/24/5/4832

Sharma, T. K., & Shukla, R. (2014). Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens. Advances in Animal and Veterinary Sciences, 2(1), 50-55.

Šmuc, T., Ahn, I.-Y., & Ulrich, H. (2013). Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. Journal of Pharmaceutical and Biomedical Analysis, 81–82, 210-217. doi:http://dx.doi.org/10.1016/j.jpba.2013.03.014

Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: recommended definitions and classification1. Biosensors and Bioelectronics, 16(1–2), 121-131. doi:http://dx.doi.org/10.1016/S0956-5663(01)00115-4

Tisone, T. C., & O’Farrell, B. (2009). Manufacturing the next generation of highly sensitive and reproducible lateral flow immunoassay: Springer.

Vilarino, N., Fonfria, E. S., Louzao, M. C., & Botana, L. M. (2009). Use of biosensors as alternatives to current regulatory methods for marine biotoxins. Sensors (Basel), 9(11), 9414-9443. doi:10.3390/s91109414

Xu, D.-X., Vachon, M., Densmore, A., Ma, R., Janz, S., Delâge, A., . . . Post, E. (2010). Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays. Opt Express, 18(22), 22867-22879.

PDF
Supplementary Material
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



2
Save
0
Citation
145
View
0
Share