References
Ahamed, M., Javed Akhtar, M., Kumar, S., Khan, M. I., Ahmad, A., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845-857. https://doi.org/10.2147/IJN.S29511
Bogdan, J., Plawinska-Czarnak, J., & Zarzynska, J. (2017). Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: A review. Nanoscale Research Letters, 12(1), 41. https://doi.org/10.1186/s11671-017-1725-6
Chen, X., Brauer, D. S., & Karpukhina, N. (2014). ‘Smart’ acid-degradable zinc-releasing silicate glasses. Materials Letters, 126, 278-280. https://doi.org/10.1016/j.matlet.2014.03.052
Du, J., Lane, L., & Nie, S. (2015). Stimuli-responsive nanoparticles for targeting the tumor microenvironment. Journal of Controlled Release, 219, 205-214. https://doi.org/10.1016/j.jconrel.2015.07.018
Du, X., & He, J. (2011). Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications. Nanoscale, 3(10), 3984-3996. https://doi.org/10.1039/C1NR10772J
Ertl, G., Knözinger, H., & Weitkamp, J. (1999). Preparation of solid catalysts. (1st ed.). Weinheim: Wiley-VCH.
Highsmith, J. (2014). Nanoparticles in Biotechnology, Drug Development & Drug Delivery (BIO113B). BCC Research.
Huang, X., Teng, X., Chen, D., Tang, F., & He, J. (2010). The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 31(3), 438-448. https://doi.org/10.1016/j.biomaterials.2009.10.047
Innocenzi, P. (2016). The sol to gel transition (1st ed., pp. 12-17). The Sol to Gel Transition.
Jones, J. R. (2013). Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 9(1), 4457-4486. https://doi.org/10.1016/j.actbio.2012.09.023
Kim, K., & Kim, H. (2003). Comparison of the effect of reaction parameters on particle size in the formation of SiO2 ,and ZrO2 nanoparticles. Materials Letters, 57(21), 3211-3216. https://doi.org/10.1016/S0167-577X(03)00216-5
Kim, T., Chung, P., & Lin, V. (2010). Facile synthesis of monodisperse spherical MCM-48 mesoporous silica nanoparticles with controlled particle size. Chemistry of Materials, 22(17), 5093-5104. https://doi.org/10.1021/cm100489e
Korsvik, C., Patil, S., Seal, S., & Self, W. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, (10), 1056-1058. https://doi.org/10.1039/b616496j
Labbaf, S., Tsigkou, O., Müller, K., Stevens, M., Porter, A., & Jones, J. R. (2011). Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials, 32(4), 1010-1018. https://doi.org/10.1016/j.biomaterials.2010.10.049
Liang, M. K., Limo, M. J., Sola-Rabada, A., Roe, M. J., & Perry, C. C. (2014). New insights into the mechanism of ZnO formation from aqueous solutions of zinc acetate and zinc nitrate. Chemistry of Materials, 26(14), 4119-4129. https://doi.org/10.1021/cm501561h
Lv, X., Zhang, L., Xing, F., & Lin, H. (2016). Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation. Microporous and Mesoporous Materials, 225, 238-244. https://doi.org/10.1016/j.micromeso.2016.02.036
Munusamy, P., Sanghavi, S., Varga, T., & Suntharampillai, T. (2014). Silica supported ceria nanoparticles: A hybrid nanostructure to increase stability and surface reactivity of nano-crystalline ceria. RSC Advances, 4(17), 8421-8430. https://doi.org/10.1039/C3RA46323B
Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. https://doi.org/10.1038/nmat3776
Nozawa, K., Gailhanou, H., Raison, L., Panizza, P., Ushiki, H., Sellier, E., Delville, J., & Delville, M. (2005). Smart control of monodisperse Stöber silica particles: Effect of reactant addition rate on growth process. Langmuir, 21(4), 1516-1523. https://doi.org/10.1021/la047361a
Othman, B., Greenwood, C., Abuelela, A., Bharath, A., Chen, S., Theodorou, I., Douglas, T., Uchida, M., Ryan, M., Merzaban, J., & Porter, A. (2016). Targeted cancer therapy: Correlative light-electron microscopy shows RGD-targeted ZnO nanoparticles dissolve in the intracellular environment of triple negative breast cancer cells and cause apoptosis with intratumor heterogeneity. Advanced Healthcare Materials, 5(11), 1248-1260. https://doi.org/10.1002/adhm.201500670
Park, J., & Oh, N. (2014). Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 9, 51-60. https://doi.org/10.2147/IJN.S39582
Rao, K. S., Srinivasa, R. K., Reddy, K. S., & Khan, M. S. (2005). A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science, 289(1), 125-131. https://doi.org/10.1016/j.jcis.2005.03.067
Silvestre-Albero, J., Sepúlveda-Escribano, A., & Reinoso, F. (2008). Preparation and characterization of zinc containing MCM-41 spheres. Microporous and Mesoporous Materials, 113(1-3), 362-369. https://doi.org/10.1016/j.micromeso.2008.01.006
Smittenaar, C., Petersen, K., Stewart, K., & Moitt, N. (2016). Cancer incidence and mortality projections in the UK until 2035. British Journal of Cancer, 115(9), 1147-1155. https://doi.org/10.1038/bjc.2016.295
Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5
Suteewong, T., Sai, H., Lee, J., Bradbury, M., Hyeon, T., Gruner, S., & Wiesner, U. (2010). Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: Structure evolution during synthesis. Journal of Materials Chemistry, 20(36), 7807-7816. https://doi.org/10.1039/c0jm01342j
Tiwari, A., Wang, R., & Wei, B. (2016). Advanced surface engineering materials (1st ed., pp. 36-42). Beverly, MA: Scrivener Publishing.