References
Arachchige, P. C. M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., & Atiquzzaman, M. (2019). Local differential privacy for deep learning. IEEE Internet of Things Journal, 7(7), 5827-5842.
Basak, D., Pal, S., & Dutta, P. (2021). Financial time series forecasting using deep learning: A systematic review and bibliometric analysis. Applied Soft Computing, 108, 107515.
Deanonymization: Blurring the Boundaries of Social Network Privacy. (n.d.). Retrieved from https://fastercapital.com/content/Deanonymization--Blurring-the-Boundaries-of-Social-Network-Privacy.html
Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197-387.
Fu, X., Hu, Z., Xu, Z., Fu, L., & Wang, X. (2017, December). De-anonymization of networks with communities: Analysis, algorithm and experiments. In GLOBECOM 2017-2017 IEEE Global Communications Conference (pp. 1-6). IEEE.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
Gross, R., & Acquisti, A. (2005, November). Information revelation and privacy in online social networks. In Proceedings of the 2005 ACM workshop on Privacy in the electronic society (pp. 71-80).
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377.
Havinga, I., Marcos, D., Bogaart, P., Massimino, D., Hein, L., & Tuia, D. (2023). Deep learning in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 290-307.
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.
Hsu, T. S., Liau, C. J., & Wang, D. W. (2014). A logical framework for privacy-preserving social network publication. Journal of Applied Logic, 12(2), 151-174.
Introduction To Deanonymization And Encryption. (n.d.). Retrieved from https://fastercapital.com/topics/introduction-to-deanonymization-and-encryption.html
Jiang, H., Gao, Y., Sarwar, S. M., GarzaPerez, L., & Robin, M. (2021, December). Differential privacy in privacy-preserving big data and learning: Challenge and opportunity. In Silicon Valley Cybersecurity Conference (pp. 33-44). Cham: Springer International Publishing.
Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., & Cheng, X. (2021). Applications of differential privacy in social network analysis: A survey. IEEE Transactions on Knowledge and Data Engineering, 35(1), 108-127.
Jiang, H., Yu, J., Cheng, X., Zhang, C., Gong, B., & Yu, H. (2021). Structure-attribute-based social network deanonymization with spectral graph partitioning. IEEE Transactions on Computational Social Systems, 9(3), 902-913.
Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity, 2(1), 1-22.
Korolova, A., Motwani, R., Nabar, S. U., & Xu, Y. (2008, October). Link privacy in social networks. In Proceedings of the 17th ACM Conference on Information and Knowledge Management (pp. 289-298).
Kourtis, M. A., Oikonomakis, A., Papadopoulos, D., Xylouris, G., & Chochliouros, I. P. (2021, December). Leveraging Deep Learning for Network Anomaly Detection. In 2021 Sixth International Conference on Fog and Mobile Edge Computing (FMEC) (pp. 1-6). IEEE.
Kumar, G., & Kumar, K. (2013). Design of an evolutionary approach for intrusion detection. The Scientific World Journal, 2013.
Lee, W. H., Liu, C., Ji, S., Mittal, P., & Lee, R. B. (2017, October). Blind de-anonymization attacks using social networks. In Proceedings of the 2017 on Workshop on Privacy in the Electronic Society (pp. 1-4).
Li, L., Yang, J., & Dong, J. (2023). Big data analytics in finance: A systematic review and agenda for future research. European Journal of Operational Research, 296(1), 113-129.
Li, X., Garg, S., & Iorga, M. (2021). Deep learning for remote sensing image classification: A survey. Remote Sensing, 13(13), 2475.
Lin, J., Dai, W., Zhao, B., & Wang, S. (2023). Deep learning applications in finance and accounting: A systematic review. International Journal of Accounting Information Systems, 41, 100580.
Liu, L., Wang, J., Liu, J., & Zhang, J. (2008). Privacy preserving in social networks against sensitive edge disclosure. Technical Report Technical Report CMIDA-HiPSCCS 006-08, Department of Computer Science, University of Kentucky, KY.
Luceri, L., Braun, T., & Giordano, S. (2019). Analyzing and inferring human real-life behavior through online social networks with social influence deep learning. Applied Network Science, 4(1), 1-25.
Ma, C., Du, X., & Cao, L. (2019). Analysis of multi-types of flow features based on hybrid neural network for improving network anomaly detection. IEEE Access, 7, 148363-148380.
Mondal, M., Correa, D., & Benevenuto, F. (2020, July). Anonymity effects: A large-scale dataset from an anonymous social media platform. In Proceedings of the 31st ACM Conference on Hypertext and Social Media (pp. 69-74).
Narayanan, A., & Shmatikov, V. (2009). De-anonymizing Social Networks. arXiv preprint arXiv:0903.3276.
Narayanan, A., & Shmatikov, V. (2009). De-anonymizing Social Networks. arXiv preprint arXiv:0903.3276.
Narayanan, A., & Shmatikov, V. (2009, May). De-anonymizing social networks. In 2009 30th IEEE Symposium on Security and Privacy (pp. 173-187). IEEE.
Qian, J., Li, X. Y., Jung, T., Fan, Y., Wang, Y., & Tang, S. (2019). Social network de-anonymization: More adversarial knowledge, more users re-identified?. ACM Transactions on Internet Technology (TOIT), 19(3), 1-22.
Qureshi, R., & Iftekharuddin, K. M. (2021). Recent advancements in deep learning architectures for multi-modal data: A survey. Pattern Recognition Letters, 150, 67-76.
Razavi-Far, R., Ruiz-Garcia, A., Palade, V., & Schmidhuber, J. (Eds.). (2022). Generative adversarial learning: architectures and applications. Springer International Publishing.
Retrieved from https://kdd.org/kdd2023/wp-content/uploads/2023/08/toc.html
Sharad, K. (2016). Learning to de-anonymize social networks (No. UCAM-CL-TR-896). University of Cambridge, Computer Laboratory.
Shrestha, R., Santucci, G., Gautam, S., & Keogh, E. (2021). Deep learning techniques for time series forecasting: A review of advancements and applications. Big Data Research, 24, 100221.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Sopuru, J., Sari, A., & Akkaya, M. (2019). Modeling A malware detection and categorization system based on seven network flow-based features. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(7).
Tadesse, T., & Reddy, K. (2021). Deep learning applications in agriculture: A review. Journal of King Saud University-Computer and Information Sciences.
Thakur, N., & Kumar, A. (2022). Deep learning for remote sensing: A comprehensive survey. Computers & Electrical Engineering, 100, 107313.
Tiwari, A., Majumder, P., & Mishra, H. (2022). Deep learning applications in agriculture: A comprehensive review. Computers and Electronics in Agriculture, 195, 105369.
Vasconcelos, M., de Castro, R., Azevedo, H. C., & Costa, H. (2022). A review on the application of deep learning in precision agriculture. Computers and Electronics in Agriculture, 195, 105308.
Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., & Zhu, M. (2017). HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access, 6, 1792-1806.
Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2017, January). Malware traffic classification using convolutional neural network for representation learning. In 2017 International Conference on Information Networking (ICOIN) (pp. 712-717). IEEE.
Wang, Y., Yan, L., Liu, Y., Li, Z., Huang, Y., & Qu, Y. (2021). An image-based deep learning framework for crop yield prediction. Computers and Electronics in Agriculture, 184, 106145.
Wondracek, G., Holz, T., Kirda, E., & Kruegel, C. (2010, May). A practical attack to de-anonymize social network users. In 2010 IEEE Symposium on Security and Privacy (pp. 223-238). IEEE.
Wondracek, G., Holz, T., Kirda, E., & Kruegel, C. (2010, May). A practical attack to de-anonymize social network users. In 2010 IEEE Symposium on Security and Privacy (pp. 223-238). IEEE.
Xiao, F., & Li, X. (2022). Deep learning for remote sensing image classification: A comprehensive review. Remote Sensing, 14(4), 705.
Xie, Y., & Zheng, M. (2016). A differentiated anonymity algorithm for social network privacy preservation. Algorithms, 9(4), 85.
Xu, Y., Meng, X., Li, Y., & Xu, X. (2020). Research on privacy disclosure detection method in social networks based on multi-dimensional deep learning. Comput. Mater. Contin, 62, 137-155.
Ying, X., & Wu, X. (2011). On link privacy in randomizing social networks. Knowledge and Information Systems, 28, 645-663.