Nanoparticle Enhanced Drug Delivery Systems for Targeted Cancer Therapy
Muhit Rana 1*, Kashfia Haque 2, Dong-Jin Lim 3
Biosensors and Nanotheranostics 3(1) 1-8 https://doi.org/10.25163/biosensors.317335
Submitted: 05 December 2023 Revised: 02 January 2024 Published: 08 January 2024
Abstract
Nanoparticle-enhanced drug delivery systems have emerged as a promising strategy to revolutionize cancer therapy by improving drug efficacy, minimizing side effects, and enabling targeted delivery. This review article provides a comprehensive overview of the current landscape of nanoparticle-based drug delivery systems for cancer therapy, focusing on recent advancements, challenges, and future perspectives. Subsequent sections cover the types of nanoparticles, their properties influencing drug delivery, principles of targeted drug delivery, advantages over conventional methods, and recent advances in nanoparticle-based drug delivery systems. Key topics addressed include the design and synthesis of nanoparticle formulations, targeting strategies in cancer therapy, in vitro and in vivo evaluation techniques, clinical translation of nanoparticle therapies, recent advancements such as smart nanoparticles and theranostic platforms, and future trends such as personalized medicine and immunotherapy. Overall, nanoparticle-based drug delivery systems offer a promising approach to overcome challenges associated with conventional cancer treatments, paving the way for personalized and targeted therapies that hold great promise in the fight against cancer.
Keywords: Cancer, Targeted drug delivery, Nanoparticles, Chemotherapy, Multidrug resistance
References
Abdelkawi, Abdullah, Aliyah Slim, Zaineb Zinoune, and Yashwant Pathak. 2023. "Surface Modification of Metallic Nanoparticles for Targeting Drugs" Coatings 13, no. 9: 1660. https://doi.org/10.3390/coatings13091660.
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials (Basel). 2022. doi: 10.3390/nano12244494.
Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 61(6), 428–437. https://doi.org/10.1016/j.addr.2009.03.009.
Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy. [Updated 2023 Feb 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK564367/
Balogh, L., Nigavekar, S. S., Nair, B. M., Lesniak, W. G., Zhang, C., Sung, L. Y., Kariapper, M. S., El-Jawahri, A., Llanes, M., Bolton, B., Mamou, F., Tan, W., Hutson, A. D., Minc, L. D., & Khan, M. K. (2007). Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine, 3(4), 281–296. https://doi.org/10.1016/j.nano.2007.09.001.
Basavaraj K. Nanjwade, Hiren M. Bechra, Ganesh K. Derkar, F.V. Manvi, Veerendra K. Nanjwade, Dendrimers: Emerging polymers for drug-delivery systems, European Journal of Pharmaceutical Sciences, Volume 38, Issue 3, 2009, Pages 185-196, ISSN 0928-0987, https://doi.org/10.1016/j.ejps.2009.07.008.
Benoit, D. S. W., & Koo, H. (2016). Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine, 11(8), 873–879. https://doi.org/10.2217/nnm-2016-0014
Berry, C. C., & Curtis, A. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics. D, Applied Physics (Print), 36(13), R198–R206. https://doi.org/10.1088/0022-3727/36/13/203.
Bethany M. Cooper, Jessica Iegre, Daniel H. O' Donovan, Maria Ölwegård Halvarsson and David R. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem. Soc. Rev., 2021, 50, 1480-1494.DOI: 10.1039/D0CS00556H.
Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017.
Bianco, A., Kostarelos, K., & Prato, M. (2019). Applications of carbon nanotubes in drug delivery. In Current Opinion in Chemical Biology (pp. 113–135). https://doi.org/10.1016/b978-0-12-814031-4.00005-2.
Bober Z, Bartusik-Aebisher D, Aebisher D. Application of Dendrimers in Anticancer Diagnostics and Therapy. Molecules. 2022. (10):3237. doi: 10.3390/molecules27103237.
Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. emergent mater. 5, 1593–1615 (2022). https://doi.org/10.1007/s42247-021-00335-x.
Chen, W., Yu, X., Cecconello, A., Sohn, Y. S., Nechushtai, R., & Willner, I. (2017). Stimuli-responsive nucleic acid-functionalized metal–organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chemical Science, 8(8), 5769–5780. https://doi.org/10.1039/c7sc01765k.
Chota, Alexander, Blassan P. George, and Heidi Abrahamse. 2023. "Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach" International Journal of Molecular Sciences 24, no. 5: 4808. https://doi.org/10.3390/ijms24054808.
Cruz, M. A., Bohinc, D., Andraska, E., Alvikas, J., Raghunathan, S., Masters, N. A., Van Kleef, N. D., Bane, K. L., Hart, K., Medrow, K., Sun, M., Liu, H., Haldeman, S., Banerjee, A., Lessieur, E. M., Hageman, K., Gandhi, A., De La Fuente, M., Nieman, M. T., . . . Stavrou, E. X. (2022). Nanomedicine platform for targeting activated neutrophils and neutrophil–platelet complexes using an α1-antitrypsin-derived peptide motif. Nature Nanotechnology, 17(9), 1004–1014. https://doi.org/10.1038/s41565-022-01161-w
Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 doi: 10.1177/20503121211034366.
Debnath, S. K., & Srivastava, R. (2021). Drug delivery with Carbon-Based nanomaterials as Versatile nanocarriers: Progress and prospects. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.644564
Deutsch, Y. E., Presutto, J. T., Brahim, A., Raychaudhuri, J., Ruiz, M., Sandoval-Sus, J., & Fernandez, H. F. (2018). Safety and Feasibility of Outpatient Liposomal Daunorubicin and Cytarabine (Vyxeos) Induction and Management in Patients with Secondary AML. Blood, 132(Supplement 1), 3559. https://doi.org/10.1182/blood-2018-99-115682.
Devarajan, P. V., & Jain, S. (2015). Targeted Drug Delivery?: Concepts and design. In Advances in delivery science and technology. https://doi.org/10.1007/978-3-319-11355-5.
Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., & Cantù, L. (2021). Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332, 312–336. https://doi.org/10.1016/j.jconrel.2021.02.031.
Ghosh, A., & Heston, W. D. (2003). Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. Journal of Cellular Biochemistry (Print), 91(3), 528–539. https://doi.org/10.1002/jcb.10661.
Halupka-Bryl, M., Asai, K., Thangavel, S., Bednarowicz, M., Krzyminiewski, R., & Nagasaki, Y. (2014). Synthesis and in vitro and in vivo evaluations of poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate) magnetic nanoparticles containing doxorubicin as a potential targeted drug delivery system. Colloids and Surfaces B: Biointerfaces, 118, 140–147. https://doi.org/10.1016/j.colsurfb.2014.03.025.
Han, G., Ghosh, P. S., & Rotello, V. M. (2007). Functionalized gold nanoparticles for drug delivery. Nanomedicine (London. Print), 2(1), 113–123. https://doi.org/10.2217/17435889.2.1.113.
Hari Singh Nalwa, Supramolecular Photosensitive and Electroactive Materials, Academic Press, 2001, Pages 793-858, ISBN 9780125139045, https://doi.org/10.1016/B978-012513904-5/50012-0.
Harish Bhardwaj, Rajendra Kumar Jangde, Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications, Next Nanotechnology, Volume 2, 2023,100013, ISSN 2949-8295, https://doi.org/10.1016/j.nxnano.2023.100013.
Huang, P. S., & Oliff, A. (2001). Drug-targeting strategies in cancer therapy. Current Opinion in Genetics & Development, 11(1), 104–110. https://doi.org/10.1016/s0959-437x(00)00164-7.
Islam Shishir, M.R.; Karim, N.; Gowd, V.; Zheng, X.; Chen, W. Liposomal Delivery of Natural Product: A Promising Approach in Health Research. Trends Food Sci. Technol. 2019, 85, 177–200.
Ito, A., Shinkai, M., Honda, H., & Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering (Online), 100(1), 1–11. https://doi.org/10.1263/jbb.100.1.
Ivanova, N. ?., Gugleva, V., Dobreva, M., IvayloPehlivanov, Stefanov, S., & Andonova, V. (2019). Silver nanoparticles as Multi-Functional Drug Delivery Systems. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.80238.
Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
Janib, S. M., Moses, A. S., & MacKay, J. A. (2010). Imaging and drug delivery using theranostic nanoparticles. Advanced Drug Delivery Reviews, 62(11), 1052–1063. https://doi.org/10.1016/j.addr.2010.08.004.
Jong, D. S. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 133. https://doi.org/10.2147/ijn.s596.
Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24(14):2137–2150.
Keefe, A. D., Pai, S., & Ellington, A. D. (2010). Aptamers as therapeutics. Nature Reviews Drug Discovery, 9(7), 537–550. https://doi.org/10.1038/nrd3141.
Ketan M. Ranch, Manish R. Shukla, Furqan A. Maulvi, Ditixa T. Desai, Chapter 7 - Carbon-based nanoparticles and dendrimers for delivery of combination drugs, Editor(s): Sanjula Baboota, Javed Ali, In Micro and Nano Technologies, Nanocarriers for the Delivery of Combination Drugs, Elsevier, 2021, Pages 227-257, ISBN 9780128207796, https://doi.org/10.1016/B978-0-12-820779-6.00009-8.
Kisakova, Lyubov A., Evgeny K. Apartsin, Lily F. Nizolenko, and Larisa I. Karpenko. 2023. "Dendrimer-Mediated Delivery of DNA and RNA Vaccines" Pharmaceutics 15, no. 4: 1106. https://doi.org/10.3390/pharmaceutics15041106.
Kolishetti, N., Dhar, S., Valencia, P. M., Lin, L., Karnik, R., Lippard, S. J., Langer, R., & Farokhzad, O. C. (2010). Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 17939–17944. https://doi.org/10.1073/pnas.1011368107.
Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces, 75(1), 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.
Lanza, G. M., Yu, X., Winter, P. M., Abendschein, D. R., Karukstis, K. K., Scott, M. J., Chinen, L. K., Fuhrhop, R. W., Scherrer, D. E., & Wickline, S. A. (2002). Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent. Circulation (New York, N.Y.), 106(22), 2842–2847. https://doi.org/10.1161/01.cir.0000044020.27990.32.
Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022. doi: 10.3390/molecules27041372.
Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010 doi: 10.1016/j.biomaterials.
Liu, L., Han, L., Wu, Q., Sun, Y., Li, K., Liu, Y., Liu, H., & Luo, E. (2021). Multifunctional DNA dendrimer nanostructures for biomedical applications. Journal of Materials Chemistry B, 9(25), 4991–5007. https://doi.org/10.1039/d1tb00689d.
Lombardo, D., ???????, ?. ?., & Caccamo, M. T. (2019). Smart Nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, 1–26. https://doi.org/10.1155/2019/3702518.
Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30(11), 592–599. https://doi.org/10.1016/j.tips.2009.08.004
Maleka P. Hashmi, Trever M. Koester, Applications of Synthetically Produced Materials in Clinical Medicine, Reference Module in Materials Science and Materials Engineering,Elsevier, 2018, ISBN 9780128035818, https://doi.org/10.1016/B978-0-12-803581-8.10258-9.
Milano, G., Innocenti, F., & Minami, H. (2022). Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Cancer Science, 113(7), 2224–2231. https://doi.org/10.1111/cas.15377.
Mokhtari, R., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., & Yeger, H. (2017). Combination therapy in combating cancer. Oncotarget, 8(23), 38022–38043. https://doi.org/10.18632/oncotarget.16723.
Mura, S., & Couvreur, P. (2012). Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 64(13), 1394–1416. https://doi.org/10.1016/j.addr.2012.06.006.
Muthu, M. S., & Wilson, B. (2012). Challenges posed by the scale-up of nanomedicines. Nanomedicine (London. Print), 7(3), 307–309. https://doi.org/10.2217/nnm.12.3.
Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1). https://doi.org/10.1186/s40580-019-0193-2.
Ngoepe M, Choonara YE, Tyagi C, Tomar LK, du Toit LC, Kumar P, Ndesendo VM, Pillay V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. Sensors (Basel). 2013. doi: 10.3390/s130607680.
Nie, S. (2010). Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (London. Print), 5(4), 523–528. https://doi.org/10.2217/nnm.10.23.
Nikdouz A, Namarvari N, Ghasemi Shayan R, Hosseini A. Comprehensive comparison of theranostic nanoparticles in breast cancer. Am J Clin Exp Immunol. 2022 Feb 15;11(1):1-27.
Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., & Salomon, D. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene (Amsterdam), 366(1), 2–16. https://doi.org/10.1016/j.gene.2005.10.018.
O’Brien, M., Wigler, N., Inbar, M., Rosso, R., Grischke, E., Santoro, A., Catane, R., Kieback, D. G., Tomczak, P., Ackland, S. P., Orlandi, F., Mellars, L., Alland, L., & Tendler, C. (2004). Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYXTM/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Annals of Oncology, 15(3), 440–449. https://doi.org/10.1093/annonc/mdh097.
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules. 2018; 23(4):907. https://doi.org/10.3390/molecules23040907.
Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., Di´az-Torres, L., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1). https://doi.org/10.1186/s12951-018-0392-8.
Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751–760. https://doi.org/10.1038/nnano.2007.387.
Priya Muralidharan, Monica Malapit, Evan Mallory, Don Hayes, Heidi M. Mansour, Inhalable nanoparticulate powders for respiratory delivery, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 11, Issue 5, 2015, Pages 1189-1199, ISSN 1549-9634, https://doi.org/10.1016/j.nano.2015.01.007.
Salma Mirza, Malik Shoaib Ahmad, Muhammad Ishaq Ali Shah, Muhammad Ateeq, Chapter 11 - Magnetic nanoparticles: drug delivery and bioimaging applications, Editor(s): Muhammad Raza Shah, Muhammad Imran, Shafi Ullah, In Micro and Nano Technologies, Metal Nanoparticles for Drug Delivery and Diagnostic Applications, Elsevier, 2020, Pages 189-213, ISBN 9780128169605, https://doi.org/10.1016/B978-0-12-816960-5.00011-2.
Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science (New York, N.Y.), 348(6230), 69–74. https://doi.org/10.1126/science.aaa4971
Shapira, A., Livney, Y. D., Broxterman, H. J., & Assaraf, Y. G. (2011). Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resistance Updates, 14(3), 150–163. https://doi.org/10.1016/j.drup.2011.01.003.
Siena, S., Sartore-Bianchi, A., Marsoni, S., Hurwitz, H. I., McCall, S. J., Penault-Llorca, F., Srock, S., Bardelli, A., & Trusolino, L. (2018). Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Annals of Oncology, 29(5), 1108–1119. https://doi.org/10.1093/annonc/mdy100.
Smith, N. R., Baker, D., James, N. H., Ratcliffe, K., Jenkins, M., Ashton, S., Sproat, G., Swann, R., Gray, N., Ryan, A. J., Jürgensmeier, J. M., & Womack, C. (2010). Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clinical Cancer Research (Print), 16(14), 3548–3561. https://doi.org/10.1158/1078-0432.ccr-09-2797.
Sumer, B. D., & Gao, J. (2008). Theranostic nanomedicine for cancer. Nanomedicine, 3(2), 137–140. https://doi.org/10.2217/17435889.3.2.137
Taberna M, Gil Moncayo F, Jané-Salas E, Antonio M, Arribas L, Vilajosana E, Peralvez Torres E, Mesía R. The Multidisciplinary Team (MDT) Approach and Quality of Care. Front Oncol. 2020. doi: 10.3389/fonc.2020.00085.
Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted Drug Delivery - From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J Multidiscip Healthc. 2021. doi: 10.2147/JMDH.S313968.
Torchilin, V. P. (2009). Passive and active drug targeting: drug delivery to tumors as an example. In Handbook of experimental pharmacology (pp. 3–53). https://doi.org/10.1007/978-3-642-00477-3_1.
Truong, N. P., Whittaker, M. R., Mak, C. W., & Davis, T. P. (2014). The importance of nanoparticle shape in cancer drug delivery. Expert Opinion on Drug Delivery (Print), 12(1), 129–142. https://doi.org/10.1517/17425247.2014.950564.
Uhlén, M., & Pontén, F. (2005). Antibody-based proteomics for human tissue profiling. Molecular & Cellular Proteomics, 4(4), 384–393. https://doi.org/10.1074/mcp.r500009-mcp200.
Van Straten, D., Mashayekhi, V., De Bruijn, H. S., Oliveira, S., & Robinson, D. J. (2017). Oncologic Photodynamic therapy: basic principles, current clinical status and future directions. Cancers, 9(12), 19. https://doi.org/10.3390/cancers9020019
Vangijzegem, T., Stanicki, D., & Laurent, S. (2018). Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opinion on Drug Delivery (Print), 16(1), 69–78. https://doi.org/10.1080/17425247.2019.1554647.
Wang, J., Li, B., Li, Q., Qiao, X., & Yang, H. (2022). Dendrimer-based drug delivery systems: history, challenges, and latest developments. Journal of Biological Engineering, 16(1). https://doi.org/10.1186/s13036-022-00298-5.
Wang, Y., Cheetham, A. G., Angacian, G., Su, H., Xie, L., & Cui, H. (2017). Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews, 110–111, 112–126. https://doi.org/10.1016/j.addr.2016.06.015.
Wei-Ren Ke, Rachel Yoon Kyung Chang, Hak-Kim Chan, Engineering the right formulation for enhanced drug delivery, Advanced Drug Delivery Reviews, Volume 191, 2022, 114561, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2022.
Xin, Y., Yin, M., Zhao, L., Meng, F., & Luo, L. (2017). Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biology & Medicine (Tianjin), 14(3), 228. https://doi.org/10.20892/j.issn.2095-3941.2017.0052.
Yamada, K. (2009). Clinical development of Abraxane, albumin-bound paclitaxel. Drug Delivery System, 24(1), 38–44. https://doi.org/10.2745/dds.24.38.
Yokosaki, Y., Matsuura, N., Sasaki, T., Murakami, I., Schneider, H., Higashiyama, S., Saitoh, Y., Yamakido, M., Taooka, Y., & Sheppard, D. (1999). The Integrin α9β1 Binds to a Novel Recognition Sequence (SVVYGLR) in the Thrombin-cleaved Amino-terminal Fragment of Osteopontin. the Journal of Biological Chemistry (Print), 274(51), 36328–36334. https://doi.org/10.1074/jbc.274.51.36328.
Zhang, C., Kimura, R. H., Abou-Elkacem, L., Levi, J., Xu, L., & Gambhir, S. S. (2016). A Cystine Knot Peptide Targeting Integrin αvβ6 for Photoacoustic and Fluorescence Imaging of Tumors in Living Subjects. The Journal of Nuclear Medicine, 57(10), 1629–1634. https://doi.org/10.2967/jnumed.115.169383.
Zhang, R. X., Ahmed, T., Li, L. Y., Li, J., & Abbasi, A. Z. (2017). Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 9(4), 1334–1355. https://doi.org/10.1039/c6nr08486a.
View Dimensions
View Altmetric
Save
Citation
View
Share