Implantable Biosensors for Long-term Monitoring of Cardiac Health
Avni A. Argun 1, Muhit Rana 1*, Hilal Ahmad Rather 2, Mohd Arif Dar 3
Biosensors and Nanotheranostics 1(1) 1-14 https://doi.org/10.25163/biosensors.117330
Submitted: 01 October 2022 Revised: 03 December 2022 Published: 12 December 2022
Abstract
Background: Continuous monitoring of cardiac health is crucial for the early detection and effective management of cardiovascular diseases. Traditional methods such as electrocardiograms (ECGs) and Holter monitors offer limited insights due to their short-term nature, highlighting the need for more comprehensive solutions. Implantable biosensors represent a significant advancement in this field, providing continuous, real-time data on critical physiological parameters. Methods: This review examines the latest developments in implantable biosensors designed for long-term cardiac health monitoring. It explores the types of sensors, including those measuring electrical activity (heart rate and ECG), blood pressure, blood flow, tissue oxygenation, and biomarkers. The review discusses advancements in sensor technologies such as glucose monitoring systems (CGMS), electrochemical sensors, pressure sensors, and optical sensors. It also highlights the integration of these sensors with wireless data transmission and biocompatibility considerations. Results: Implantable biosensors are capable of providing continuous, real-time monitoring of key cardiac parameters. Advances include flexible, biocompatible sensors for heart rate monitoring, microfluidic devices combining ECG with pressure sensing, and miniaturized sensors for blood pressure and blood flow measurement. Novel sensors also monitor tissue oxygenation and biomarkers, with some designed for real-time glucose monitoring, which correlates with cardiac health. These technologies demonstrate the potential for improved early detection of cardiac abnormalities, personalized treatment strategies, and enhanced patient outcomes. Conclusion: Implantable biosensors represent a significant advancement in cardiac health monitoring, offering the capability for continuous, real-time data collection directly from within the body. These devices have the potential to revolutionize cardiac care by providing comprehensive, long-term monitoring of critical physiological parameters. Despite the promising developments, challenges such as biocompatibility, data accuracy, and patient comfort remain. Future research should focus on addressing these challenges and exploring the full potential of implantable biosensors to enhance cardiac health management and patient care.
Keywords: Implantable biosensors, continuous monitoring, cardiac health, real-time data, wearable technology
References
Alam, F., Ahmed, M. A., Jalal, A., Siddiquee, I., Adury, R., Hossain, G., & Pala, N. (2024). Recent progress and challenges of implantable biodegradable biosensors. Micromachines, 15(4), 475. https://doi.org/10.3390/mi15040475
Avni A. Argun, Muhit Rana. (2022), Point-of-care (POC) assay to detect dengue exposure, Biosensors and Nanotheranostics, 1(1), 7329.
Awad K, Weiss R, Yunus A, Bittrick JM, Nekkanti R, Houmsse M, Okabe T, Adamson T, Miller C, Alawwa AK. BioMonitor 2 in-office setting insertion safety and feasibility evaluation with device functionality assessment: results from the prospective cohort BioInsight study. BMC Cardiovasc Disord. 2020 Apr 15;20(1):171. Doi: 10.1186/s12872-020-01439-8.
Batchinsky, A. I., Cancio, L. C., Salinas, J., Kuusela, T., Cooke, W. H., Wang, J. J., … & Holcomb, J. B. (2007). Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients. The Journal of trauma, 63(3), 512-518.
Bayoumy, K., Gaber, M., Elshafeey, A. et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 18, 581–599 (2021). https://doi.org/10.1038/s41569-021-00522-7
Chowdhury, A. H., Jafarizadeh, B., Baboukani, A. R., Pala, N., & Wang, C. (2023). Monitoring and analysis of cardiovascular pulse waveforms using flexible capacitive and piezoresistive pressure sensors and machine learning perspective. Biosensors & Bioelectronics/Biosensors & Bioelectronics (Online), 237, 115449. https://doi.org/10.1016/j.bios.2023.115449.
Dervisevic, M., Alba, M., Prieto-Simon, B., & Voelcker, N. H. (2020). Skin in the diagnostics game: Wearable biosensor nano- and microsystems for medical diagnostics. Nano Today, 30, 100828. https://doi.org/10.1016/j.nantod.2019.100828
Edwards, S. J., Wakefield, V., Jhita, T., Kew, K. M., Cain, P., & Marceniuk, G. (2020). Implantable cardiac monitors to detect atrial fibrillation after cryptogenic stroke: a systematic review and economic evaluation. HTA on DVD/Health Technology Assessment, 24(5), 1–184. https://doi.org/10.3310/hta24050
Gerdan, Z., Saylan, Y., & Denizli, A. (2024). Biosensing platforms for cardiac biomarker detection. ACS Omega, 9(9), 9946–9960. https://doi.org/10.1021/acsomega.3c06571
Ghorbanizamani, F., Moulahoum, H., Celik, E. G., & Timur, S. (2023). Material Design in Implantable Biosensors toward Future Personalized Diagnostics and Treatments. Applied Sciences, 13(7), 4630. https://doi.org/10.3390/app13074630
Gray, M., Meehan, J., Ward, C., Langdon, S., Kunkler, I., Murray, A., & Argyle, D. (2018). Implantable biosensors and their contribution to the future of precision medicine. The Veterinary Journal, 239, 21–29. https://doi.org/10.1016/j.tvjl.2018.07.011
Gunnerson, K. J., Saul, M., He, S., & Kellum, J. A. (2006). Lactate versus non-lactate
metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Critical care, 10(1), R22.
Hafeman, D. G., Parce, J. W., & McConnell, H. M. (1988). Light-Addressable potentiometric sensor for biochemical systems. Science, 240(4856), 1182–1185. https://doi.org/10.1126/science.3375810
Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J. Electrochemical biosensors and nanobiosensors. Essays Biochem. 2016;60(1):69-80. doi: 10.1042/EBC20150008.
He S, Yuan Y, Nag A, Feng S, Afsarmanesh N, Han T, Mukhopadhyay SC, Organ DR. A Review on the Use of Impedimetric Sensors for the Inspection of Food Quality. Int J Environ Res Public Health. 2020 ;17(14):5220. Doi: 10.3390/ijerph17145220.
Hess, J. W. (1964). Serum creatine phosphokinase (CPK) activity in disorders of heart and skeletal muscle. Annals of Internal Medicine, 61(6), 1015. https://doi.org/10.7326/0003-4819-61-6-1015
Huang, S., Liu, Y., Zhao, Y., Ren, Z., & Guo, C. F. (2018). Flexible Electronics: Stretchable electrodes and their future. Advanced Functional Materials, 29(6). https://doi.org/10.1002/adfm.201805924
Huntgeburth M, Hohmann C, Ewert P, Freilinger S, Nagdyman N, Neidenbach R, Pieper L, Pieringer F, Lennerz C, Kaemmerer H, Kolb C. Implantable loop recorder for monitoring patients with congenital heart disease. Cardiovasc Diagn Ther. 2021 ;11(6):1334-1343. Doi: 10.21037/cdt-20-677.
Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A., & Asghar, W. (2021). Advances in healthcare wearable devices. Npj Flexible Electronics, 5(1). https://doi.org/10.1038/s41528-021-00107-x
Jaime FJ, Muñoz A, Rodríguez-Gómez F, Jerez-Calero A. Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare. Sensors (Basel). 2023 Nov 3;23(21):8944. Doi: 10.3390/s23218944.
Kakria P, Tripathi NK, Kitipawang P. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors. Int J Telemed Appl. 2015;2015:373474. Doi: 10.1155/2015/373474.
Karimian, N., Vagin, M., Zavar, M. H. A., Chamsaz, M., Turner, A. P., & Tiwari, A. (2013). An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosensors & Bioelectronics/Biosensors & Bioelectronics (Online), 50, 492–498. https://doi.org/10.1016/j.bios.2013.07.013
Kim, H., Rigo, B., Wong, G., Lee, Y. J., & Yeo, W. (2023). Advances in wireless, batteryless, implantable electronics for Real-Time, continuous physiological monitoring. Nano-Micro Letters, 16(1). https://doi.org/10.1007/s40820-023-01272-6.
Kim, J., Lee, H., & Park, J. (2022). "Feasibility of Continuous Glucose Monitoring Systems for Cardiac Health Assessment." Journal of Cardiology, 78(4), 456-463.
Kim, S., Malik, J., Seo, J. M., Cho, Y. M., & Bien, F. (2022). Subcutaneously implantable electromagnetic biosensor system for continuous glucose monitoring. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-22128-w.
Kraut, J. A., & Madias, N. E. (2014). Lactic acidosis. New England Journal of Medicine, 371(24), 2309-2319.
Lee, C., & Wong, M. (2024). "Continuous Glucose Monitoring in Post-Operative Cardiac Care: A Systematic Review." Journal of Clinical Monitoring and Computing, 38(1), 67-78.
Lin, J., Fu, R., Zhong, X., Yu, P., Tan, G. Li, W., Zhang, H., Li, Y., Zhou, L., & Ning, C. (2021). Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Reports Physical Science, 2(8), 100541. https://doi.org/10.1016/j.xcrp.2021.100541
Liu, G., Lv, Z., Batool, S., Li, M., Zhao, P., Guo, L., Wang, Y., Zhou, Y., & Han, S. (2023). Biocompatible Material-Based flexible biosensors: from materials design to Wearable/Implantable devices and integrated sensing systems. Small,19(27). https://doi.org/10.1002/smll.202207879.
Lu T, Ji S, Jin W, Yang Q, Luo Q, Ren TL. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors (Basel). 2023 Mar 9;23(6):2991. doi: 10.3390/s23062991.
Malitesta, C., Palmisano, F., Torsi, L., & Zambonin, P. G. (1990). Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Analytical Chemistry, 62(24), 2735–2740. https://doi.org/10.1021/ac00223a016
Mathieu Lemay, Mattia Bertschi, Josep Sola, Philippe Renevey, Elsa Genzoni, Martin Proença, Damien Ferrario, Fabian Braun, Jakub Parak, Ilkka Korhonen, Chapter 18 - Applications of Optical Cardiovascular Monitoring, Editor(s): Edward Sazonov, Wearable Sensors (Second Edition), Academic Press, 2021, Pages 487-517, ISBN 9780128192467, https://doi.org/10.1016/B978-0-12-819246-7.00018-8.
Mcshane, M. J., Biswas, A., Nagaraja, A., Cote, G. L., & Pishko, M. V. (2015, December 9). WO2017100680A1 - Implantable biosensors-Google Patents. https://patents.google.com/patent/WO2017100680A1/en.
Moshawrab M, Adda M, Bouzouane A, Ibrahim H, Raad A. Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review. Sensors (Basel). 2023;23(2):828. doi: 10.3390/s23020828.
N. Akouz, A. El Ghazi, M. Zourhri, S. Hamida, B. Cherradi and A. Raihani, "A Comprehensive Review on Monitoring Sensors for Cardiovascular Disease Prevention and Management," 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Mohammedia, Morocco, 2023, pp. 1-8, doi: 10.1109/IRASET57153.2023.10152939.
Nash KE, Ong KG, Guldberg RE. Implantable biosensors for musculoskeletal health. Connect Tissue Res. 2022;63(3):228-242. doi: 10.1080/03008207.2022.2041002.
Nath, P., Mahtaba, K. R., & Ray, A. (2023). Fluorescence-Based portable assays for detection of biological and chemical analytes. Sensors, 23(11), 5053. https://doi.org/10.3390/s23115053
Nishikimi, T., Maeda, N., & Matsuoka, H. (2006). The role of natriuretic peptides in cardioprotection. Cardiovascular Research, 69(2), 318–328. https://doi.org/10.1016/j.cardiores.2005.10.001
Omar, R., Saliba, W., Khatib, M., Zheng, Y., Pieters, C., Oved, H., Silberman, E., Zohar, O., Hu, Z., Kloper, V., Broza, Y. Y., Dvir, T., Dana, A. G., Wang, Y., & Haick, H. (2024). Biodegradable, biocompatible, and implantable multifunctional sensing platform for cardiac monitoring. ACS Sensors, 9(1), 126–138. https://doi.org/10.1021/acssensors.3c01755
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors (Basel). 2022;12(6):385. doi: 10.3390/bios12060385.
Rixen, D., & Siegel, J. H. (2005). Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Critical Care, 9(5), 441.
Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors (Basel). 2020 Jul 21;10(7):79. doi: 10.3390/bios10070079.
Runjie He, Lingyu Shen, Zhuo Wang, Guoqing Wang, Hang Qu, Xuehao Hu, Rui Min, Optical fiber sensors for heart rate monitoring: A review of mechanisms and applications, Results in Optics, Volume 11, 2023, 100386, ISSN 2666-9501,
Sandulescu, R., Tertis, M., Cristea, C., & Bodoki, E. (2015). New materials for the construction of electrochemical biosensors. In InTech eBooks. https://doi.org/10.5772/60510.
Schrittwieser, Stefan, Beatriz Pelaz, Wolfgang J. Parak, Sergio Lentijo-Mozo, Katerina Soulantica, Jan Dieckhoff, Frank Ludwig, Annegret Guenther, Andreas Tschöpe, and Joerg Schotter. 2016. "Homogeneous Biosensing Based on Magnetic Particle Labels" Sensors 16, no. 6: 828. https://doi.org/10.3390/s16060828.
Smith, R., & Johnson, T. (2023). "Integrating CGMS Data with Cardiac Monitoring: A Comprehensive Review." Cardiovascular Research, 119(2), 234-245.
Solaro, R. J. (1999). Troponin I, Stunning, Hypertrophy, and failure of the heart. Circulation Research, 84(1), 122–124. https://doi.org/10.1161/01.res.84.1.122.
Song, M., Lin, X., Peng, Z., Xu, S., Jin, L., Zheng, X., & Luo, H. (2021). Materials and methods of biosensor interfaces with stability. Frontiers in Materials, 7. https://doi.org/10.3389/fmats.2020.583739.
Suvrajyoti Mishra, Smita Mohanty, and Ananthakumar Ramadoss. Functionality of Flexible Pressure Sensors in Cardiovascular Health Monitoring: A Review. ACS Sensors 2022 7 (9), 2495-2520. DOI: 10.1021/acssensors.2c00942
Tang, C., Liu, Z., & Li, L. (2022). Mechanical sensors for cardiovascular monitoring: from Battery-Powered to Self-Powered. Biosensors, 12(8), 651. https://doi.org/10.3390/bios12080651.
Thoelen, R., Vansweevelt, R., Duchateau, J., Horemans, F., D’Haen, J., Lutsen, L., Vanderzande, D., Ameloot, M., vandeVen, M., & Cleij, T. (2008). A MIP-based impedimetric sensor for the detection of low-MW molecules. Biosensors & Bioelectronics/Biosensors & Bioelectronics (Online), 23(6), 913–918. https://doi.org/10.1016/j.bios.2007.08.020
Tran, D. H., & Wang, Z. V. (2019). Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association. Cardiovascular and Cerebrovascular Disease, 8(12). https://doi.org/10.1161/jaha.119.012673
Yang, Y., Lu, Y., Gupta, A. K., & Lin, S. (2022). Real-time impedimetric detection of cardiac troponin I using ITO-coated vertically aligned silicon nanowires. Materials Letters, 311, 131575. https://doi.org/10.1016/j.matlet.2021.131575
Yogev D, Goldberg T, Arami A, Tejman-Yarden S, Winkler TE, Maoz BM. Current state of the art and future directions for implantable sensors in medical technology: Clinical needs and engineering challenges. APL Bioeng. 2023 Sep 27;7(3):031506. doi: 10.1063/5.0152290.
Zha B, Wang Z, Li L, Hu X, Ortega B, Li X, Min R. Wearable cardiorespiratory monitoring with stretchable elastomer optical fiber. Biomed Opt Express. 2023;14(5):2260-2275. doi: 10.1364/BOE.490034.
Zhang T, Liu N, Xu J, Liu Z, Zhou Y, Yang Y, Li S, Huang Y, Jiang S. Flexible electronics for cardiovascular healthcare monitoring. Innovation (Camb). 2023 ;4(5):100485. doi: 10.1016/j.xinn.2023.100485.
Zhang, Y., & Liu, X. (2023). "Advancements in Continuous Glucose Monitoring Technologies for Cardiovascular Applications." Biosensors and Bioelectronics, 224, 114-121.
View Dimensions
View Altmetric
Save
Citation
View
Share