Biopharmaceuticals and medical sciences | Online ISSN 3064-9226
RESEARCH ARTICLE   (Open Access)

Clinical Significance of Personalized Neoantigen Vaccine (G1-PES) for The Treatment of Various Types of Advanced Metastatic Cancer Patients in 2001 to 2014: Treatment Case Reports

John A Catanazaro1*, Md Shamsuddin Sultan Khan 1, Mohamed Khadeer Ahmded Basheer 2, Anton Yuryev 1, Andrew Dickens 1

+ Author Affiliations

Journal of Precision Biosciences 2(1) 1-10 https://doi.org/10.25163/biosciences.21210160506070820

Submitted: 05 July 2020  Revised: 05 August 2020  Published: 07 August 2020 

Abstract

Immunopeptide therapy has provided significant clinical improvements in the treatment of several malignancies. The generation 1 personalized edited sequence (G1-PES) vaccine administered to 43 severe metastatic cancer patients (terminal stage), safely and effectively in Dr. Catanzaro’s clinic in 2001 to 2014. These all patients were considered for 3 to 4 months life support with no hope. Patients were on G1-PES an 18-month therapy program with the objective of achieving remission and cancer free survival within 18 months. Typically, patients received 4 cycles every 12 weeks. The safety and efficacy were assessed through adverse events, progression-free survival (PFS), overall survival (OS) and other parameters. Patients that received G1-PES were free from any serious adverse effects (SAE’s), while receiving and after therapy.  Typical reactions included slight fever, flu-like symptoms for 1-2 days and rash at route of administration site that lasted for 2-3 days.  All of these minor reactions were self-limiting.  Patients had significantly improved quality of life within 1-3 weeks of receiving therapy, with diminishing symptoms associated with their cancer and clinical evidence of cancer regression (p<0.001). G1-PES vaccine was feasible and safe for patients with advanced metastatic cancer. G1-PES vaccine was designed based on T cell-mediated immune response targeting tumor neoantigens as antitumor efficacy.

Key words: Immunotherapy, Cancer, G1-PES (Generation-1 Personalized Edited Sequence), Neoantigen, Personalized vaccine, Peptide vaccine, Advanced malignant tumor

References

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492

Carreno, B. M., Magrini, V., Becker-Hapak, M., Kaabinejadian, S., Hundal, J., Petti, A. A., Ly, A., Lie, W. R., Hildebrand, W. H., Mardis, E. R., & Linette, G. P. (2015). A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science, 348(6236), 803-808. https://doi.org/10.1126/science.aaa3828

Chen, F., Wei, J., & Liu, B. (2019). Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. The Journal of Clinical Investigation, 129(5), 2056-2070. https://doi.org/10.1172/JCI99538

Guo, Y., Lei, K., & Tang, L. (2018). Neoantigen vaccine delivery for personalized anticancer immunotherapy. Frontiers in Immunology, 9, 1499. https://doi.org/10.3389/fimmu.2018.01499

https://doi.org/10.25163/biosciences.112090DB112921119

Khong, H., & Overwijk, W. W. (2016). Adjuvants for peptide-based cancer vaccines. Journal for ImmunoTherapy of Cancer, 4, 56. https://doi.org/10.1186/s40425-016-0160-y

Linnemann, C., van Buuren, M. M., Bies, L., Verdegaal, E. M. E., Schotte, R., Calis, J. J. A., Behjati, S., Velds, A., Hilkmann, H., El Atmioui, D., Visser, M., Stratton, M. R., Haanen, J. B. A. G., & Schumacher, T. N. (2015). High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nature Medicine, 21(1), 81-85. https://doi.org/10.1038/nm.3773

McGahan, J. P., Brock, J. M., Tesluk, H., Gu, W. Z., Schneider, P., & Browning, P. D. (1992). Hepatic ablation with use of radio-frequency electrocautery in the animal model. Journal of Vascular and Interventional Radiology, 3(2), 291-297. https://doi.org/10.1016/S1051-0443(92)72028-4

Ott, P. A., Hu, Z., Keskin, D. B., Shukla, S. A., Sun, J., Bozym, D. J., Zhang, W., Luoma, A., Giobbie-Hurder, A., Peter, L., Chen, C., Olive, O., Carter, T. A., Li, S., Lieb, D. J., Eisenhaure, T., Gjini, E., Stevens, J., Lane, W. J., Javeri, I., & Wu, C. J. (2017). An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 547(7662), 217-221. https://doi.org/10.1038/nature22991

Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., Xiong, F., Guo, C., Wu, X., Li, Y., Li, X., Li, G., Xiong, W., & Zeng, Z. (2019). Neoantigen vaccine: An emerging tumor immunotherapy. Molecular Cancer, 18, 128. https://doi.org/10.1186/s12943-019-1055-6

Prickett, T. D., Crystal, J. S., Cohen, C. J., Pasetto, A., Parkhurst, M. R., Gartner, J. J., Yossef, R., Robbins, P. F., Mclellan, A. D., & Rosenberg, S. A. (2016). Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor antigens. Cancer Immunology Research, 4(8), 669-678. https://doi.org/10.1158/2326-6066.CIR-15-0215

Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W., Yuan, J., Wong, P., Ho, T. S., Miller, M. L., Rekhtman, N., Moreira, A. L., Ibrahim, F., Bruggeman, C., Danilova, L., Hanick, N. A., Kirsch, I., Culhane, A. C., & Chan, T. A. (2015). Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348(6230), 124-128. https://doi.org/10.1126/science.aaa1348

Schumacher, T. N., Scheper, W., & Kvistborg, P. (2014). A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 512(7514), 324-327. https://doi.org/10.1038/nature13387

Tran, E., Turcotte, S., Gros, A., Robbins, P. F., Lu, Y. C., Dudley, M. E., Wunderlich, J. R., Somerville, R. P., Hogan, K., Hinrichs, C. S., Parkhurst, M. R., Yang, J. C., & Rosenberg, S. A. (2014). Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science, 344(6184), 641-645. https://doi.org/10.1126/science.1251102

Van Rooij, N., van Buuren, M. M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., van Dijk, L. J., Behjati, S., Hilkmann, H., El Atmioui, D., Nieuwland, R., van Hall, T., Schumacher, T. N., Kvistborg, P., & Haanen, J. B. A. G. (2013). Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of Clinical Oncology, 31(e439-e442). https://doi.org/10.1200/JCO.2012.47.7521

Wang, S., Liu, H., Zhang, X., & Qian, F. (2015). Intranasal and oral vaccination with protein-based antigens: Advantages, challenges, and formulation strategies. Protein & Cell, 6(7), 480-503. https://doi.org/10.1007/s13238-015-0164-2

Widenmeyer, M., Shebzukhov, Y., Haen, S. P., Schmidt, D., Clasen, S., Boss, A., Seyfarth, M., Duewell, P., Endres, S., Pfannes, K., Strittmatter, W., Stenzl, A., Rammensee, H. G., & Noessner, E. (2011). Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. International Journal of Cancer, 128(11), 2653-2662. https://doi.org/10.1002/ijc.25601

Yarchoan, M., Johnson, B. A., Lutz, E. R., Laheru, D. A., & Jaffee, E. M. (2017). Targeting neoantigens to augment antitumour immunity. Nature Reviews Cancer, 17(3), 209-222. https://doi.org/10.1038/nrc.2017.74

Yoshida, K., Noguchi, M., Mine, T., Komatsu, N., Yutani, S., Ueno, T., Yanagimoto, H., Kawano, K., Itoh, K., & Yamada, A. (2011). Characteristics of severe adverse events after peptide vaccination for advanced cancer patients: Analysis of 500 cases. Oncology Reports, 25(1), 57-62. https://doi.org/10.3892/or_00001041

Yuryev A., Catanzaro J., Khan, M. S. S. (2019a). Development of Personalized Therapeutics Using Neo7logix Precision Profiling in Lung Cancer. Biosciences, 1(1), 016-025.

Yuryev, A., & Catanzaro, J. (2019). Development of personalized therapeutics using Neo7logix® precision profiling for progressive CNS inflammation and damage following TBI. Journal of Personalized Medicine, 9(2), 29. https://doi.org/10.3390/jpm9020029

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



19
Save
0
Citation
1079
View
2
Share