Artificial Intelligence in Analyzing Patient Data for Precision Medicine
Md Shamsuddin Sultan Khan 1*, Md Mazedul Haq 2
Journal of Precision Biosciences 2(1) 1-11 https://doi.org/10.25163/biosciences.212023
Submitted: 20 January 2020 Revised: 13 March 2020 Published: 14 March 2020
Abstract
Background: Precision medicine represents a transformative shift in disease diagnosis and patient care by integrating genetic, medical, and personal data. This approach surpasses traditional symptom-based methods by facilitating earlier interventions and tailored treatment plans. Methods: This study explores the role of artificial intelligence (AI) in precision medicine, focusing on its ability to analyze extensive patient datasets using advanced techniques such as deep learning and machine learning. These AI methods identify complex patterns and relationships within the data. Results: AI-driven analysis enables the creation of highly individualized treatment plans, enhancing the precision of medical interventions. The integration of AI in precision medicine leads to improved diagnostic accuracy and therapeutic efficacy. Conclusion: AI has the potential to revolutionize precision medicine by providing deeper insights into patient data, leading to more personalized and effective healthcare solutions. This advancement promises to enhance patient outcomes and transform the future of medical practice.
Keywords: Precision medicine, Artificial Intelligence, Treatment Efficacy, Medical Interventions.
References
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ digital medicine, 1(1), 39.
Ahmed, F., Kang, I. S., Kim, K. H., Asif, A., Rahim, C. S. A., Samantasinghar, A., ... & Choi, K. H. (2023). Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, and virtual screening-based approaches. Journal of Medical Virology, 95(4), e28693.
Alfaras, M., Soriano, M. C., & Ortín, S. (2019). A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Frontiers in Physics, 103.
Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., ... & Albekairy, A. M. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689.
Amarasingham, R., Patzer, R. E., Huesch, M., Nguyen, N. Q., & Xie, B. (2014). Implementing electronic health care predictive analytics: considerations and challenges. Health affairs, 33(7), 1148-1154.
Becker, J., Decker, J. A., Römmele, C., Kahn, M., Messmann, H., Wehler, M., ... & Scheurig-Muenkler, C. (2022). Artificial intelligence-based detection of pneumonia in chest radiographs. Diagnostics, 12(6), 1465.
Berlyand, Y., Raja, A. S., Dorner, S. C., Prabhakar, A. M., Sonis, J. D., Gottumukkala, R. V., ... & Yun, B. J. (2018). How artificial intelligence could transform emergency department operations. The American journal of emergency medicine, 36(8), 1515-1517.
Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., Conde-Torres, D., Antelo-Riveiro, P., Pineiro, A., & Garcia-Fandino, R. (2023). The role of ai in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals, 16(6), 891.
Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., Conde-Torres, D., Antelo-Riveiro, P., Pineiro, A., & Garcia-Fandino, R. (2023). The role of ai in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals, 16(6), 891.
Crossnohere, N. L., Elsaid, M., Paskett, J., Bose-Brill, S., & Bridges, J. F. (2022). Guidelines for artificial intelligence in medicine: literature review and content analysis of frameworks. Journal of Medical Internet Research, 24(8), e36823.
Donzé, J., Aujesky, D., Williams, D., & Schnipper, J. L. (2013). Potentially avoidable 30-day hospital readmissions in medical patients: derivation and validation of a prediction model. JAMA internal medicine, 173(8), 632-638.
Drescher, C. W., Shah, C., Thorpe, J., O'Briant, K., Anderson, G. L., Berg, C. D., ... & McIntosh, M. W. (2013). Longitudinal screening algorithm that incorporates change over time in CA125 levels identifies ovarian cancer earlier than a single-threshold rule. Journal of clinical oncology, 31(3), 387.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118.
Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subjects research. Proceedings of the National Academy of Sciences, 115(27), E6106-E6115
Gandhi, S. O., Gandhi, S., & Sabik, L. (2014). Emergency department visit classification using the NYU algorithm.
Gellman, L. (2015). THE WALL STRETJ0URNAL.
Guedj, M., Swindle, J., Hamon, A., Hubert, S., Desvaux, E., Laplume, J., ... & Moingeon, P. (2022). Industrializing AI-powered drug discovery: lessons learned from the Patrimony computing platform. Expert Opinion on Drug Discovery, 17(8), 815-824.
Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., ... & Zalaudek, I. (2018). Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Annals of oncology, 29(8), 1836-1842.
Han, K., Cao, P., Wang, Y., Xie, F., Ma, J., Yu, M., ... & Wan, J. (2022). A review of approaches for predicting drug–drug interactions based on machine learning. Frontiers in pharmacology, 12, 814858.
Han, S. S., Park, I., Chang, S. E., Lim, W., Kim, M. S., Park, G. H., ... & Na, J. I. (2020). Augmented intelligence dermatology: deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. Journal of Investigative Dermatology, 140(9), 1753-1761.
Haug, C. J., & Drazen, J. M. (2023). Artificial intelligence and machine learning in clinical medicine, 2023. New England Journal of Medicine, 388(13), 1201-1208.
Hautz, W. E., Kämmer, J. E., Hautz, S. C., Sauter, T. C., Zwaan, L., Exadaktylos, A. K., ... & Schauber, S. K. (2019). Diagnostic error increases mortality and length of hospital stay in patients presenting through the emergency room. Scandinavian journal of trauma, resuscitation and emergency medicine, 27(1), 1-12.
Huang, C., Clayton, E. A., Matyunina, L. V., McDonald, L. D., Benigno, B. B., Vannberg, F., & McDonald, J. F. (2018). Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Scientific reports, 8(1), 16444.
Ioannidis, J. P., & Khoury, M. J. (2018). Evidence-based medicine and big genomic data. Human molecular genetics, 27(R1), R2-R7.
Kazancigil, M. A. (2022). Big medical data, cloud computing, and artificial intelligence for improving diagnosis in healthcare. In Big Data Analytics for Healthcare (pp. 139-150). Academic Press.
Kim, H. E., Kim, H. H., Han, B. K., Kim, K. H., Han, K., Nam, H., ... & Kim, E. K. (2020). Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. The Lancet Digital Health, 2(3), e138-e148.
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big data analysis. science, 343(6176), 1203-1205.
Le Tourneau, C., Delord, J. P., Gonçalves, A., Gavoille, C., Dubot, C., Isambert, N., ... & Paoletti, X. (2015). Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. The lancet oncology, 16(13), 1324-1334.
Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., ... & Irizarry, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733-739.
Li, S., Zhao, R., & Zou, H. (2022). Artificial intelligence for diabetic retinopathy. Chinese Medical Journal, 135(03), 253-260.
Martin, G. L., Jouganous, J., Savidan, R., Bellec, A., Goehrs, C., Benkebil, M., ... & French Network of Pharmacovigilance Centres. (2022). Validation of artificial intelligence to support the automatic coding of patient adverse drug reaction reports, using nationwide pharmacovigilance data. Drug Safety, 45(5), 535-548.
Marwala, T. (2015). Causality, correlation and artificial intelligence for rational decision making. World Scientific.
McCorduck, P., & Cfe, C. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. CRC Press.
McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S. (2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.
Myszczynska, M. A., Ojamies, P. N., Lacoste, A. M., Neil, D., Saffari, A., Mead, R., ... & Ferraiuolo, L. (2020). Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Reviews Neurology, 16(8), 440-456.
Nelson, K. M., Chang, E. T., Zulman, D. M., Rubenstein, L. V., Kirkland, F. D., & Fihn, S. D. (2019). Using predictive analytics to guide patient care and research in a national health system. Journal of general internal medicine, 34, 1379-1380.
Peiffer-Smadja, N., Dellière, S., Rodriguez, C., Birgand, G., Lescure, F. X., Fourati, S., & Ruppé, E. (2020). Machine learning in the clinical microbiology laboratory: has the time come for routine practice?. Clinical Microbiology and Infection, 26(10), 1300-1309.
Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O'Sullivan, J. M. (2022). A review of feature selection methods for machine learning-based disease risk prediction. Frontiers in Bioinformatics, 2, 927312.
Quazi, S. (2022). Artificial intelligence and machine learning in precision and genomic medicine. Medical Oncology, 39(8), 120.
Raghunath, S., Pfeifer, J. M., Ulloa-Cerna, A. E., Nemani, A., Carbonati, T., Jing, L., ... & Haggerty, C. M. (2021). Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation–related stroke. Circulation, 143(13), 1287-1298.
Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London.
Schmidt, C. (2017). MD Anderson breaks with IBM Watson, raising questions about artificial intelligence in oncology.
Singh, D. P., & Kaushik, B. (2023). A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques. Chemical Biology & Drug Design, 101(1), 175-194.
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44-56.
Tran, T. T. V., Surya Wibowo, A., Tayara, H., & Chong, K. T. (2023). Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. Journal of Chemical Information and Modeling, 63(9), 2628-2643.
Undru, T. R., Utkarsha, U. D. A. Y., Lakshmi, J. T., Kaliappan, A., Mallamgunta, S., Nikhat, S. S., ... & Archana, G. A. U. R. (2022). Integrating Artificial Intelligence for Clinical and Laboratory Diagnosis–a Review. Maedica, 17(2), 420.
Voosen, P. (2017). The AI detectives Science, 357(6346): p. 22–27.
Weis, C. V., Jutzeler, C. R., & Borgwardt, K. (2020). Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: a systematic review. Clinical Microbiology and Infection, 26(10), 1310-1317.
Zhang, H., Chen, Y., & Li, F. (2021). Predicting anticancer drug response with deep learning constrained by signaling pathways. Frontiers in Bioinformatics, 1, 639349.
Zhou, N., Zhang, C. T., Lv, H. Y., Hao, C. X., Li, T. J., Zhu, J. J., ... & Zhang, X. C. (2019). Concordance study between IBM Watson for oncology and clinical practice for patients with cancer in China. The oncologist, 24(6), 812-819.
View Dimensions
View Altmetric
Save
Citation
View
Share