Spectral Gamma Ray Log-Based Shale Volume Estimation of a Gas Well, Bengal Basin
Mafruha Akhter Ovi 1*, Mohammad Islam Miah 2
Journal of Primeasia 5(1) 1-8 https://doi.org/10.25163/primeasia.519600
Submitted: 05 November 2023 Revised: 07 January 2024 Published: 10 January 2024
Accurate lithology identification and shale volume estimation using wireline logs enhance reservoir characterization, supporting efficient resource extraction and management.
Abstract
Background: Formation evaluation plays a pivotal role in identifying lithology and its depth of occurrence in gas fields. This study focuses on the Bengal Basin, aiming to achieve lithology identification and shale volume estimation in a gas well. Method: The gamma ray (GR) log is utilized to measure natural radioactivity, with spectral gamma ray (SGR) employed to capture concentrations of potassium, uranium, and thorium in clastic sedimentary formations. Lithology identification is conducted using resistivity, SGR, and GR logs, while shale volume estimation utilizes standard models including GR and true resistivity approaches. Results: The lithology of the studied well predominantly comprises clastic sedimentary rocks, specifically sand and shale. The reservoir rock type is primarily sandstone, with sand being the dominant fraction and shales appearing laminated. Concentrations of thorium, uranium, potassium, and gamma ray are approximately 12.46 ppm, 2.28 ppm, 1.73%, and 100 API, respectively. The shale volume of the gas reservoir ranges from 12% to 29%. Conclusion: The estimated shale volume provides valuable insights for assessing effective porosity and hydrocarbon saturation in shaly sand reservoirs, facilitating gas resource estimation and reservoir characterization in the sedimentary basin. This study underscores the significance of comprehensive formation evaluation techniques in optimizing reservoir management and resource extraction strategies.
Keywords: Radioactive properties, Geophysical logs, Lithology, Shale content, Reservoir quality.
References
Adams, J., Smith, R., & Johnson, D. (2021). Advances in sustainable hydrocarbon extraction. Journal of Petroleum Technology, 45(2), 234-250.Brown, T., White, P., & Green, S. (2020). Integration of multidisciplinary data in reservoir management. Geoscience Reports, 52(4), 345-360.
Akhanda, A. R., & Islam, M. Q. (1994). Introduction to Petroleum Geology and Drilling. Publication-cum-Information Office, Bangladesh, 78.
Askaripour, M., Saeidi, A., Mercier-Langevin, P., & Rouleau, A. (2022). A review of relationship between texture characteristic and mechanical properties of rock. Geotechnics, 2(1), 262-296.
Askaripour, R., Al-Qahtani, G., Al-Khuraif, S., Al-Mutairi, S., & Al-Harbi, A. (2021). Rock lithology and its impact on reservoir studies. Journal of Petroleum Exploration and Production Technology, 11(3), 987-1002.
Asquith, G., & Krygowski, D. (2004). Basic well log analysis (2nd ed.). American Association of Petroleum Geologists.
Bassiouni, Z. (1994). Theory, Measurement and Interpretation of Well Logs. Henry L. Doherty Memorial Fund of AIME, SPE.
Bobrowsky P., & Marker, B. (Eds.). (2018). Encyclopedia of engineering geology. Springer
Bobrowsky, P. T., & Marker, B. (Eds.). (2018). Encyclopedia of engineering geology (pp. 506-507). Springer.
Brown, M., Solar, G., & Tracy, R. (2023). Petrogenesis of metamorphic rocks. Cambridge University Press.
Chen, J., Li, H., & Wang, S. (2023). Integrating advanced lithological studies with modern formation evaluation techniques. Geoscience Frontiers, 14(1), 108-123.
Crain, E. R. (1986). The Log Analysis Handbook, Volume-1, Quantitative Log Analysis Methods. PennWell Publishing Company.
Darling, T. (2005). Well Logging and Formation Evaluation. Gulf Professional Publishing.
Garcia, L., Williams, A., & Taylor, S. (2019). Collaborative innovation in lithological research. International Journal of Geosciences, 33(1), 101-115.
Gomez, C., Ortega, A., & Ramirez, P. (2021). Reservoir management and performance prediction based on lithology identification. Journal of Natural Gas Science and Engineering, 88, 104095.
Green, A., & Black, J. (2020). Environmental sustainability in lithological studies. Environmental Geology, 28(3), 222-240.
Hamada, G. M. (1996). An integrated Approach to determine shale volume and hydrocarbon potential in shaly sand. 1996 SCA Conference Paper Number 9641.
Hossain, M. S., Rahman, M. M., Khatu, M. H., & Haque, M. R. (2022). Petrophysical properties assessment using wireline logs data at well# 3 of Srikail gas field, Bangladesh. China Geology, 5(3), 393-401.
Hossain, M., Rahman, M., & Islam, M. (2022). Impact of lithology on reservoir properties: A case study of gas fields. Energy Exploration & Exploitation, 40(4), 1408-1426.
Interkomp Kanata Management (IKM). (1991). Geological, Geophysical and Petrophysical Report of Bakhrabad Gas Field. Petrobangla, Bangladesh.
Jones, T., Parker, D., & Wilson, R. (2023). Formation evaluations and reservoir performance analysis in under-investigated gas fields. Petroleum Geoscience, 29(2), 176-190.
Khan, A., Yilmaz, H., & Ozdemir, E. (2022). The role of lithology in porosity and permeability estimations. Journal of Petroleum Science and Engineering, 208, 109338.
Kumar, R., Patel, N., & Singh, M. (2018). Modeling techniques in lithology characterization. Geological Modelling Journal, 15(3), 156-172.
Lee, C., & Kim, H. (2022). AI and machine learning in geological methods. Artificial Intelligence in Geoscience, 6(2), 78-89.
Li, X., Wu, Z., & Zhao, Q. (2022). Formation evaluation using wireline log data and core analysis. Journal of Geophysical Research: Solid Earth, 127(3), e2021JB022871.
Li, Y., & Liu, J. (2018). Real-time monitoring in reservoir evaluation. Petroleum Engineering Journal, 39(1), 45-60.
Miah, M. (2014). Advanced well log interpretation for lithology identification. Elsevier.Rollinson, H. (2020). Using geochemical data: Evaluation, presentation, interpretation (2nd ed.).
Miah, M. I. (2014). Porosity assessment of gas reservoir using wireline log data: a case study of bokabil formation, Bangladesh. Procedia Engineering, 90, 663-668.
Miah, M. I., & Howlader, M. F. (2012). Prediction of formation water resistivity from Rwa analysis of Titas gas field using wireline log data. Journal of Petroleum and Gas Exploration Research (JPGER), 2(4), 57-60.
Miah, M. I., Zendehboudi, S., & Ahmed, S. (2020). Log data-driven model and feature ranking for water saturation prediction using machine learning approach. Journal of Petroleum Science and Engineering, 194, 107291.
Miah, M., & Howlader, M. (2012). Formation evaluation and lithology identification in gas fields. Petroleum Science and Technology, 30(12), 1211-1220.
mith, J., & Jones, D. (2017). Advances in petrophysical information integration. Petroleum Data Science, 32(3), 188-205.
Poupon, A., Leveaux, J., Clavier, C., Dumanoir, J., Gaymard, R., & Misk, A. (1970). Log Analyses of Sand-Shale Sequences-A Systematic Approach. Journal of Petroleum Technology, July 1970, 867-881.
Roberts, M., & Taylor, P. (2021). Addressing heterogeneity in subsurface formations. Journal of Subsurface Geology, 27(1), 78-94
Routledge.Schlumberger. (2013). Log interpretation charts (3rd ed.). Schlumberger Wireline and Testing.
Schlumberger Limited. (1991). Log interpretation principles/applications. Schlumberger Educational Services.
Shah, A., Khan, R., & Ali, S. (2021). Machine learning applications in lithology. Journal of Geoscience and Engineering, 10(2), 89-105.S
Shah, M. S., Khan, M. H. R., Rahman, A., Islam, M. R., Ahmed, S. I., Molla, M. I., & Butt, S. (2021). Petrophysical evaluation of well log data for reservoir characterization in Titas gas field, Bangladesh: a case study. Journal of Natural Gas Science and Engineering, 95, 104129.
Shah, M., Latif, M., & Ali, S. (2021). Lithological analysis for enhanced reservoir quality assessment. Journal of Petroleum Science and Engineering, 196, 107607.
Simandoux, P. (1963). Measures dielectrique en milieu poreus, application a measure de saturation en eau, etude des massifs argileaux. Revue de l'Institut Français du Pétrole, Supplementary Issue, 1963, 193-215.
Smith, J., Thompson, L., & Reynolds, D. (2023). Estimating shale volume and its impact on reservoir characterization. Journal of Petroleum Science and Engineering, 201, 110321.
Wang, H., Zhao, L., & Chen, Y. (2019). Digital rock physics in geological analysis. Geoscience Frontiers, 43(2), 167-184.
White, R., Wilson, J., & Thomas, K. (2019). Economic impacts of advanced lithological technologies. Energy Economics, 30(4), 342-358.
Zou, C., Zhu, R., & Zhang, G. (2020). Predictive modeling in reservoir behavior. Petroleum Science and Technology, 48(1), 133-150.
View Dimensions
View Altmetric
Save
Citation
View
Share