References
Agrebi, S., & Larbi, A. (2020). Use of artificial intelligence in infectious diseases. In Artificial Intelligence Precision Health (pp. 415–438). https://doi.org/10.1007/978-3-030-32181-5_15
Ahammed Muneer, K. V., Rajendran, V. R., & K, P. J. (2019). Glioma tumor grade identification using artificial intelligent techniques. Journal of Medical Systems, 43, 113. https://doi.org/10.1007/s10916-019-1241-8
Ahmad, Z., Rahim, S., Zubair, M., & Abdul-Ghafar, J. (2021). Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: Present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagnostic Pathology, 16(1). https://doi.org/10.1186/s13000-021-01081-0
Alberdi, E., Povykalo, A., Strigini, L., & Ayton, P. (2004). Effects of incorrect computer-aided detection (CAD) output on decision-making in mammography. Academic Radiology, 11(8), 909-918. https://doi.org/10.1016/j.acra.2004.03.012
Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-based expert systems: The MYCIN experiments of the Stanford Heuristic Programming Project. In B. G. Buchanan & E. H. Shortliffe (Eds.), Artificial intelligence in medicine (pp. 702). Addison-Wesley. https://www.sciencedirect.com/science/article/abs/pii/0004370285900670
Buitrago, P. A., Nystrom, N. A., Gupta, R., & Sald, J. (2019). Delivering scalable deep learning to research with Bridges-AI. In Latin American High-Performance Computing Conference (CARLA) (pp. 43-57). https://link.springer.com/chapter/10.1007/978-3-030-42090-6_5
Colubri, A., Silver, T., Fradet, T., Retzepi, K., Fry, B., & Sabeti, P. C. (2016). Transforming clinical data into actionable prognosis models: Machine-learning framework and field-deployable app to predict the outcome of Ebola patients. PLoS Neglected Tropical Diseases, 10(3), e0004549. https://doi.org/10.1371/journal.pntd.0004549
Davenport, T. H., & Glaser, J. (2002). Just-in-time delivery comes to knowledge management. Harvard Business Review, 80(7), 107–111, 126.
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018). Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 80-89). IEEE. https://doi.org/10.1109/DSAA.2018.00018
Go, T., Kim, J. H., Byeon, H., & Lee, S. J. (2018). Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. Journal of Biophotonics, 11(8), e201800101. https://doi.org/10.1002/jbio.201800101
Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402–2410. https://doi.org/10.1001/jama.2016.17216
Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., & Fujishiro, M. (2018). Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 21(4), 653–660. https://doi.org/10.1007/s10120-018-0793-2
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
Kaur, I., Behl, T., Aleya, L., Sehgal, A., Singh, S., Sharma, S., ... & Bungau, S. (2021). Artificial intelligence as a fundamental tool in the management of infectious diseases and its current implementation in the COVID-19 pandemic. Environmental Science and Pollution Research, 28(33), 40515–40532. https://doi.org/10.1007/s11356-021-14506-6
Kaur, I., Behl, T., Aleya, L., Sehgal, A., Singh, S., Sharma, S., ... & Bungau, S. (2021). Artificial intelligence as a fundamental tool in the management of infectious diseases and its current implementation in the COVID-19 pandemic. Environmental Science and Pollution Research, 28(33), 40515–40532. https://doi.org/10.1007/s11356-021-14506-6
Kochanny, S. E., & Pearson, A. T. (2021). Academics as leaders in the cancer artificial intelligence revolution. Cancer, 127(5), 664-671. https://doi.org/10.1002/cncr.33345
Kricka, L. J. (2019). History of disruptions in laboratory medicine: What have we learned from predictions? Clinical Chemistry and Laboratory Medicine, 57(3), 308-311. https://doi.org/10.1515/cclm-2018-0621
Lee, J. H., Ha, E. J., & Kim, J. H. (2019). Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT. European Radiology, 29, 5452-5457. https://doi.org/10.1007/s00330-019-06152-9[Clinical Application of Artificial Intelligence Recognition Technology in the Diagnosis of Stage T1 Lung Cancer]. (n.d.). Europe PMC. Retrieved March 17, 2022, from https://europepmc.org/article/med/31109442
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., ... & Xia, J. (2020). Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905
Malhi, I. S., & Yiu, Z. Z. N. (2021). Algorithm-based smartphone apps to assess risk of skin cancer in adults: Critical appraisal of a systematic review. British Journal of Dermatology, 184(4), 638-639. https://doi.org/10.1111/bjd.19872
Mathison, B. A., Kohan, J. L., Walker, J. F., Pritt, B. S., Bishop, H. S., & Roberts, G. D. (2020). Detection of intestinal protozoa in trichrome-stained stool specimens by use of a deep convolutional neural network. Journal of Clinical Microbiology, 58(7), e02053–19. https://doi.org/10.1128/JCM.02053-19
McCartney, M. (2018). Margaret McCartney: AI in medicine must be rigorously tested. BMJ, 361, k1752. https://doi.org/10.1136/bmj.k1752
Mobadersany, P., Yousefi, S., Amgad, M., Gutman, D. A., Barnholtz-Sloan, J. S., Vega, J. E., Brat, D. J., & Cooper, L. A. (2018). Predicting cancer outcomes from histology and genomics using convolutional networks. Proceedings of the National Academy of Sciences, 115(13), E2970-E2979. https://doi.org/10.1073/pnas.1717139115
Nurses say distractions cut bedside time by 25%. (n.d.). HealthLeaders Media. Retrieved May 4, 2022, from https://www.healthleadersmedia.com/nursing/nurses-say-distractions-cut-bedside-time-25
Peiffer-Smadja, N., Dellière, S., Rodriguez, C., Birgand, G., Lescure, F. X., Fourati, S., & Ruppé, É. (2020). Machine learning in the clinical microbiology laboratory: Has the time come for routine practice? Clinical Microbiology and Infection, 26(10), 1300–1309. https://doi.org/10.1016/j.cmi.2020.02.003
Rysavy, M. (2013). Evidence-based medicine: A science of uncertainty and an art of probability. Virtual Mentor, 15(1), 4-8. https://doi.org/10.1001/virtualmentor.2013.15.1.msoc1-1301
Silverman, E. (2017, September 5). IBM pitched Watson as a revolution in cancer care. It’s nowhere close. STAT. Retrieved May 4, 2022, from https://www.statnews.com/2017/09/05/watson-ibm-cancer/
Smith, K. P., & Kirby, J. E. (2020). Image analysis and artificial intelligence in infectious disease diagnostics. Clinical Microbiology and Infection, 26(10), 1318–1323. https://doi.org/10.1016/j.cmi.2020.04.026
Smith, K. P., Kang, A. D., & Kirby, J. E. (2018). Automated interpretation of blood culture gram stains by use of a deep convolutional neural network. Journal of Clinical Microbiology, 56(3), e01521–17. https://doi.org/10.1128/JCM.01521-17
Supporting digital healthcare services using semantic web technologies. (2018, October 16). ISWC 2018. Retrieved May 4, 2022, from http://iswc2018.semanticweb.org/sessions/supporting-digital-healthcare-services-using-semantic-web-technologies/index.html
Surmacz, K., Kamath, A. F., & Andel, D. V. (2021). Fairness in AI: How can we avoid bias and disparities in orthopedic applications of artificial intelligence? Journal of Orthopedic Experimental Innovation, 4, 25901. https://doi.org/10.1038/s44167-021-00147-y
The performance of DL model based on varying cut-offs for clinical laboratory tests. (n.d.). ResearchGate. Retrieved March 17, 2022, from https://www.researchgate.net/figure/The-performance-of-DL-model-based-on-varying-cut-offs-for-clinical-laboratory-test_tbl1_351969929
Utermohlen, K. (2022, May 4). 4 Robotic Process Automation (RPA) applications in the healthcare industry. Medium. https://medium.com/@karl.utermohlen/4-robotic-process-automation-rpa-applications-in-the-healthcare-industry-4d449b24b613
Vaishya, R., Javaid, M., Khan, I. H., & Haleem, A. (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 337–339. https://doi.org/10.1016/j.dsx.2020.04.012
Wan, G., Du, B., Pan, S., & Haffari, G. (2020). Reinforcement learning-based meta-path discovery in large-scale heterogeneous information networks. In Proceedings of the AAAI Conference on Artificial Intelligence, 34(4), 6094-6101. https://doi.org/10.1609/aaai.v34i04.6025
Weis, C. V., Judeler, C. R., & Borgwardt, K. (2020). Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review. Clinical Microbiology and Infection, 26(10), 1310–1317. https://doi.org/10.1016/j.cmi.2020.02.015
Yala, A., Barzilay, R., Salama, L., Griffin, M., Sollender, G., Bardia, A., & Celli, R. (2017). Using machine learning to parse breast pathology reports. Breast Cancer Research and Treatment, 161(2), 203-211. https://doi.org/10.1007/s10549-016-4068-9
Ye, J. (2020). The role of health technology and informatics in a global public health emergency: Practices and implications from the COVID-19 pandemic. JMIR Medical Informatics, 8(7), e19866. https://doi.org/10.2196/19866
Zemouri, R., Devalland, C., Valmary-Degano, S., & Zerhouni, N. (2019). [Neural network: A future in pathology?]. Annales de Pathologie, 39(2), 119-129. https://doi.org/10.1016/j.annpat.2019.01.00