References
Abhang, P. A., Gawali, B. W., & Mehrotra, S. C. (2016). Introduction to EEG- and speech-based emotion recognition. Academic Press.
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11).
Avilov, O., Rimbert, S., Popov, A., & Bougrain, L. (2020, July). Deep learning techniques to improve intraoperative awareness detection from electroencephalographic signals. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 142-145). IEEE.
Bamdad, M., Zarshenas, H., & Auais, M. A. (2015). Application of BCI systems in neurorehabilitation: A scoping review. Disability and Rehabilitation: Assistive Technology, 10(5), 355-364.
Bansal, D., & Mahajan, R. (2019). EEG-based brain-computer interfaces: Cognitive analysis and control applications. Academic Press.
Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.
Bozinovska, L., Bozinovski, S., & Stojanov, G. (1992, August). Electroexpectogram: Experimental design and algorithms. In Proceedings of the 1992 International Biomedical Engineering Days (pp. 55-60). IEEE.
Ciregan, D., Meier, U., & Schmidhuber, J. (2012, June). Multi-column deep neural networks for image classification. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (pp. 3642-3649). IEEE.
Clerc, M., & Bougrain, L. (Eds.). (2016). Brain–Computer Interfaces 2. Wiley-ISTE.
Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197-387.
Fitzpatrick, T. (2006, July 27). Teenager moves video icons just by imagination. Washington University in St. Louis News and Information. https://source.wustl.edu/2006/07/teenager-moves-video-icons-just-by-imagination/
Gajawada, S. K. (2019). The Math behind Artificial Neural Networks. Towards Data Science. https://towardsdatascience.com/the-heart-of-artificial-neural-networks-26627e8c03ba
Gavrilova, Y. (2020). A guide to deep learning and neural networks. Serokell. https://serokell.io/blog/deep-learning-and-neural-network-guide
Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2008). A novel connectionist system for unconstrained handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868.
Gulati, T., Won, S. J., Ramanathan, D. S., Wong, C. C., Bodepudi, A., Swanson, R. A., & Ganguly, K. (2015). Robust neuroprosthetic control from the stroke perilesional cortex. Journal of Neuroscience, 35(22), 8653-8661.
Hardesty, L. (2017). Explained: Neural networks. MIT News, 14. Retrieved from https://news.mit.edu/2017/explained-neural-networks-0314
Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5), 5947.
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Hyötyniemi, H. (1996). Turing machines are recurrent neural networks. In Proceedings of STEP 96 (pp. 15).
Kübler, A. (2020). The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics, 13(2), 163-180.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
Liu, J., Wu, G., Luo, Y., Qiu, S., Yang, S., Li, W., & Bi, Y. (2020). EEG-based emotion classification using a deep neural network and sparse autoencoder. Frontiers in Systems Neuroscience, 14, 43.
Liu, W., Zheng, W. L., & Lu, B. L. (2016). Emotion recognition using multimodal deep learning. In Neural Information Processing: 23rd International Conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part II (pp. 521-529). Springer International Publishing.
Liu, Y., Sourina, O., & Nguyen, M. K. (2010, October). Real-time EEG-based human emotion recognition and visualization. In 2010 International Conference on Cyberworlds (pp. 262-269). IEEE.
Makin, J. G., Moses, D. A., & Chang, E. F. (2020). Machine translation of cortical activity to text with an encoder–decoder framework. Nature Neuroscience, 23(4), 575-582.
Marblestone, A. H., Wayne, G., & Kording, K. P. (2016). Toward an integration of deep learning and neuroscience. Frontiers in Computational Neuroscience, 10, 94.
Martini, M. L., Oermann, E. K., Opie, N. L., Panov, F., Oxley, T., & Yaeger, K. (2020). Sensor modalities for brain-computer interface technology: A comprehensive literature review. Neurosurgery, 86(2), E108-E117.
Miranda, R. A., Casebeer, W. D., Hein, A. M., Judy, J. W., Krotkov, E. P., Laabs, T. L., ... & Ling, G. S. (2015). DARPA-funded efforts in the development of novel brain–computer interface technologies. Journal of Neuroscience Methods, 244, 52-67.
Mostafa, M. S. M., Atia, A., & Abdulkader, S. N. (2015). Brain computer interfacing: Applications and challenges. Springer International Publishing.
Mouton, C., Myburgh, J. C., & Davel, M. H. (2020, December). Stride and translation invariance in CNNs. In Southern African Conference for Artificial Intelligence Research (pp. 267-281). Cham: Springer International Publishing.
Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211-1279.
Opie, N. (2021). The Stentrode TM neural interface system. In Brain-Computer Interface Research: A State-of-the-Art Summary 9 (pp. 127-132).
Pei, X., Barbour, D. L., Leuthardt, E. C., & Schalk, G. (2011). Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. Journal of Neural Engineering, 8(4), 046028.
Polikov, V. S., Tresco, P. A., & Reichert, W. M. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148(1), 1-18.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.
Serruya, M., & Donoghue, J. (2003). Design principles of a neuromotor prosthetic device. In Neuroprosthetics: Theory and Practice (pp. 1158-1196).
Soldozy, S., Young, S., Kumar, J. S., Capek, S., Felbaum, D. R., Jean, W. C., ... & Syed, H. R. (2020). A systematic review of endovascular stent-electrode arrays, a minimally invasive approach to brain-machine interfaces. Neurosurgical Focus, 49(1), E3.
Sugiyama, S. (Ed.). (2019). Human Behavior and Another Kind in Consciousness: Emerging Research and Opportunities. CRC Press.
Teleb, M. S., Cziep, M. E., Lazzaro, M. A., Gheith, A., Asif, K., Remler, B., & Zaidat, O. O. (2014). Idiopathic intracranial hypertension: A systematic analysis of transverse sinus stenting. Interventional Neurology, 2(3), 132-143.
Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., & Chervyakov, N. I. (2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation, 177, 232-243.
Veena, N., & Anitha, N. (2020). A review of non-invasive BCI devices. International Journal of Biomedical Engineering and Technology, 34(3), 205-233.
Willett, F. R. (2021). A high-performance handwriting BCI. In Brain-Computer Interface Research: A State-of-the-Art Summary 10 (pp. 105-109).
Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., & Shenoy, K. V. (2021). High-performance brain-to-text communication via handwriting. Nature, 593(7858), 249-254.
Williamson, W. G., Cooper, R., Allison, J., McCutcheon, E., & Whittlestone, W. (1964). Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature, 203, 380-384.
Yanagisawa, T., Hirata, M., Saitoh, Y., Kishima, H., Matsushita, K., Goto, T., ... & Yoshimine, T. (2012). Electrocorticographic control of a prosthetic arm in paralyzed patients. Annals of Neurology, 71(3), 353-361.
Yang, Z. R., & Yang, Z. (2014). Comprehensive Biomedical Physics. Elsevier.
Zhang, W., Itoh, K., Tanida, J., & Ichioka, Y. (1990). Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Applied Optics, 29(32), 4790-4797.
Zheng, W. L., & Lu, B. L. (2015). Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on Autonomous Mental Development, 7(3), 162-175.
Zheng, W. L., Liu, W., Lu, Y., Lu, B. L., & Cichocki, A. (2018). Emotionmeter: A multimodal framework for recognizing human emotions. IEEE Transactions on Cybernetics, 49(3), 1110-1122.
Zheng, W. L., Zhu, J. Y., Peng, Y., & Lu, B. L. (2014, July). EEG-based emotion classification using deep belief networks. In 2014 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.