References
ATA, A. M. B. (2021). Autoregression features for smart robotic wheelchair EEG-ICA classification using a bagging model.
Benevides, A. B., Bastos, T. F., & Sarcinelli Filho, M. (2011, June). Proposal of brain-computer interface architecture to command a robotic wheelchair. In 2011 IEEE International Symposium on Industrial Electronics (pp. 2249-2254). IEEE.
Candiotti, J. L., Daveler, B. J., Kamaraj, D. C., Chung, C. S., Cooper, R., Grindle, G. G., & Cooper, R. A. (2019). A heuristic approach to overcome architectural barriers using a robotic wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(9), 1846-1854.
Carlson, T., & Demiris, Y. (2012). Collaborative control for a robotic wheelchair: Evaluation of performance, attention, and workload. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3), 876-888.
Chen, X., Wang, Y., Nakanishi, M., Gao, X., Jung, T. P., & Gao, S. (2015). High-speed spelling with a noninvasive brain–computer interface. Proceedings of the National Academy of Sciences, 112(44), E6058-E6067.
de Almeida Afonso, P., & Ferreira Jr, P. R. (2023). Autonomous navigation of wheelchairs in indoor environments using deep reinforcement learning and computer vision.
Del Castillo, G., Skaar, S., Cardenas, A., & Fehr, L. (2006). A sonar approach to obstacle detection for a vision-based autonomous wheelchair. Robotics and Autonomous Systems, 54(12), 967-981.
Delmas, S., Morbidi, F., Caron, G., Albrand, J., Jeanne-Rose, M., Devigne, L., & Babel, M. (2021, January). SpheriCol: A driving assistance system for power wheelchairs based on spherical vision and range measurements. In 2021 IEEE/SICE International Symposium on System Integration (SII) (pp. 505-510). IEEE.
Delmas, S., Morbidi, F., Caron, G., Babel, M., & Pasteau, F. (2023). SpheriCol: A driving assistant for power wheelchairs based on spherical vision. IEEE Transactions on Medical Robotics and Bionics.
Devigne, L., Pasteau, F., Babel, M., Narayanan, V. K., Guegan, S., & Gallien, P. (2018, October). Design of a haptic guidance solution for assisted power wheelchair navigation. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3231-3236). IEEE.
Erdogan, A., & Argall, B. D. (2017). The effect of robotic wheelchair control paradigm and interface on user performance, effort and preference: An experimental assessment. Robotics and Autonomous Systems, 94, 282-297.
Ezeh, C., Trautman, P., Devigne, L., Bureau, V., Babel, M., & Carlson, T. (2017, July). Probabilistic vs linear blending approaches to shared control for wheelchair driving. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 835-840). IEEE.
Ghezala, A. A., Sentouh, C., & Pudlo, P. (2022). Direct model-reference adaptive control for wheelchair simulator control via a haptic interface. IFAC-PapersOnLine, 55(29), 49-54.
How, T. V., Wang, R. H., & Mihailidis, A. (2013). Evaluation of an intelligent wheelchair system for older adults with cognitive impairments. Journal of NeuroEngineering and Rehabilitation, 10, 1-16.
Ikeda, H., Toyama, T., Maki, D., Sato, K., & Nakano, E. (2021). Cooperative step-climbing strategy using an autonomous wheelchair and a robot. Robotics and Autonomous Systems, 135, 103670.
Jeong, W., Kwon, M., Youm, K., Jeon, H., & Oh, S. (2024). Design of Wheelchair Drive Unit Capable of Driving on Roads and Obstacles with Shape Conversion. Applied Sciences, 14(4), 1434.
Jin, J., Zhang, H., Daly, I., Wang, X., & Cichocki, A. (2017). An improved P300 pattern in BCI to catch user’s attention. Journal of Neural Engineering, 14(3), 036001.
Kutbi, M., Du, X., Chang, Y., Sun, B., Agadakos, N., Li, H., ... & Mordohai, P. (2020). Usability studies of an egocentric vision-based robotic wheelchair. ACM Transactions on Human-Robot Interaction (THRI), 10(1), 1-23.
LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., & He, B. (2013). Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. Journal of Neural Engineering, 10(4), 046003.
Leblong, E., Fraudet, B., Devigne, L., Babel, M., Pasteau, F., Nicolas, B., & Gallien, P. (2021). SWADAPT1: Assessment of an electric wheelchair-driving robotic module in standardized circuits: A prospective, controlled repeated measure design pilot study. Journal of NeuroEngineering and Rehabilitation, 18, 1-12.
Li, H., Yuan, D., Ma, X., Cui, D., & Cao, L. (2017). Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Scientific Reports, 7(1), 41011.
Morales, Y., Watanabe, A., Ferreri, F., Even, J., Shinozawa, K., & Hagita, N. (2018). Passenger discomfort map for autonomous navigation in a robotic wheelchair. Robotics and Autonomous Systems, 103, 13-26.
Morbidi, F., Devigne, L., Teodorescu, C. S., Fraudet, B., Leblong, E., Carlson, T., & Ragot, N. (2022). Assistive robotic technologies for next-generation smart wheelchairs: Codesign and modularity to improve users’ quality of life. IEEE Robotics & Automation Magazine, 30(1), 24-35.
Ngo, B. V., & Nguyen, T. H. (2022). A semi-automatic wheelchair with navigation based on virtual-real 2D grid maps and EEG signals. Applied Sciences, 12(17), 8880.
Podobnik, J., Rejc, J., Slajpah, S., Munih, M., & Mihelj, M. (2017). All-terrain wheelchair: Increasing personal mobility with a powered wheel-track hybrid wheelchair. IEEE Robotics & Automation Magazine, 24(4), 26-36.
Rebsamen, B., Guan, C., Zhang, H., Wang, C., Teo, C., Ang, M. H., & Burdet, E. (2010). A brain controlled wheelchair to navigate in familiar environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), 590-598.
Reddy, A. G., & Narava, S. (2013). Artifact removal from EEG signals. International Journal of Computer Applications, 77(13).
Simpson, R. C., LoPresti, E. F., & Cooper, R. A. (2008). How many people would benefit from a smart wheelchair? Journal of Rehabilitation Research & Development, 45(1).
Sinyukov, D., Desmond, R., Dickerman, M., Fleming, J., Schaufeld, J., & Padir, T. (2014). Multi-modal control framework for a semi-autonomous wheelchair using modular sensor designs. Intelligent Service Robotics, 7, 145-155.
Sumikura, S., Shibuya, M., & Sakurada, K. (2019, October). OpenVSLAM: A versatile visual SLAM framework. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 2292-2295).
Teodorescu, C. S., Caplan, I., Eberle, H., & Carlson, T. (2021, June). Model-based sensor fusion and filtering for localization of a semi-autonomous robotic vehicle. In 2021 European Control Conference (ECC) (pp. 1283-1290). IEEE.
Vailland, G., Devigne, L., Pasteau, F., Nouviale, F., Fraudet, B., Leblong, E., & Gouranton, V. (2021, March). VR based power wheelchair simulator: Usability evaluation through a clinically validated task with regular users. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (pp. 420-427). IEEE.
Viswanathan, P., Zambalde, E. P., Foley, G., Graham, J. L., Wang, R. H., Adhikari, B., ... & Mitchell, I. M. (2017). Intelligent wheelchair control strategies for older adults with cognitive impairment: User attitudes, needs, and preferences. Autonomous Robots, 41, 539-554.
Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., ... & Vaughan, T. M. (2000). Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164-173.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791).
World Health Organization: WHO. (2024, January 2). Assistive technology. Retrieved from https://www.who.int/news-room/fact-sheets/detail/assistive-technology
Wu, B. F., Chen, Y. S., Huang, C. W., & Chang, P. J. (2018). An uphill safety controller with deep learning-based ramp detection for intelligent wheelchairs. IEEE Access, 6, 28356-28371.
Zolotas, M., Elsdon, J., & Demiris, Y. (2018, October). Head-mounted augmented reality for explainable robotic wheelchair assistance. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1823-1829). IEEE.