Multidisciplinary research and review journal | Online ISSN 3064-9870
RESEARCH ARTICLE   (Open Access)

Molecular Detection and Characterization of Carbapenemases Among Carbapenem-Resistant Escherichia Coli And Klebsiella Pneumoniae Isolated from Urine

Hussaini I.M.1*, Suleiman A.B.1, Olonitola O.S.1, Oyi R.A.2

+ Author Affiliations

Journal of Primeasia 2 (1) 1-8 https://doi.org/10.25163/primeasia.2120212

Submitted: 05 January 2021 Revised: 04 February 2021  Published: 09 February 2021 


Abstract

Objective: Carbapenem resistance mediated by carbapenemases poses a significant public health threat due to its transferable nature, unlike other carbapenem resistance mechanisms. This study aimed to molecularly detect and characterize carbapenemases among carbapenem-resistant Escherichia coli and Klebsiella pneumoniae isolated from urine samples. Methods: A total of 123 non-duplicate isolates (70 E. coli and 53 K. pneumoniae) were screened for carbapenem resistance using Clinical Laboratory Standard Institute guidelines. Carbapenem-resistant isolates were further tested for the presence of carbapenemase genes (blaKPC, blaOXA, blaNDM) using PCR. Positive PCR products were sequenced, and sequence similarity was analyzed using nucleotide BLAST. Multiple sequence alignment was performed using ClustalW and BioEdit. Results: Among the 123 isolates screened, 6 (4.88%) were carbapenem-resistant, including 2 (2.86%) E. coli and 4 (7.55%) K. pneumoniae isolates. Carbapenemase genes were detected in five out of the six carbapenem-resistant isolates. The most frequently detected carbapenemase gene was blaOXA (57.14%), followed by blaNDM (42.86%). No blaKPC gene was detected. Co-harboring of blaNDM and blaOXA genes was observed in two isolates. Sequence similarity analysis showed 98–100% identity with carbapenemase genes from GenBank. Nucleotide substitutions were absent in blaNDM gene sequences, while nucleotide substitutions leading to corresponding amino acid changes were observed in blaOXA gene sequences at various positions. Conclusion: Carbapenem resistance in the studied isolates was predominantly mediated by OXA and NDM carbapenemases. These findings underscore the importance of monitoring carbapenemase spread among Gram-negative bacteria to mitigate the emergence and dissemination of carbapenem-resistant strains, which jeopardize the efficacy of carbapenems as last-resort antibiotics.

Keywords: Carbapenem resistance, carbapenemases, Escherichia coli, Klebsiella pneumoniae, PCR detection

References


Al-Agamy, M. H., Aljallala, A., Radwana, H. H., & Shibl, A. M. (2018). Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. Journal of Infection and Public Health, 11(1), 64-68.

Alaka, O. O., Orimolade, E. A., Ojo, O. O., & Onipede, A. O. (2019). The phenotypic detection of carbapenem resistant organisms in orthopaedic wound infections in Ile-Ife, Nigeria. Acta Scientific Microbiology, 2(2), 35-42.

Anibijuwon, I. I., Gbala, I. D., & Adebisi, O. O. (2018). Carbapenem-resistant Enterobacteriaceae among in-patients of tertiary hospitals in Southwest, Nigeria. Notulae Scientia Biologicae, 10(3), 310-317.

Centers for Disease and Prevention. (2013). Vital signs: carbapenem-resistant Enterobacteriaceae. Morbidity and Mortality Weekly Report, 62, 165-170.

Chiu, S. H., Ma, L., Chan, M. C., Lin, Y. T., Fung, C. P., Wu, T. L., Chuang, Y. C., Lu, P. L., Wang, J. T., Lin, J. C., & Yeh, K. M. (2018). Carbapenem nonsusceptible Klebsiella pneumoniae in Taiwan: Dissemination and increasing resistance of carbapenemase producers during 2012–2015. Scientific Reports, 8, 8468.

Clinical and Laboratory Standards Institute (CLSI). (2015). Performance standards for antimicrobial susceptibility testing. 25th informational supplement, M100-S25 35(3), 112-126.

Clinical and Laboratory Standards Institute (CLSI). (2019). Performance standards for antimicrobial susceptibility testing. 29th supplement M100 39(3).

Codjoe, F. S., Eric, S., & Donkor, E. S. (2018). Carbapenem resistance: A review. Medical Science, 6(1), 1-28.

Demir, Y., Zer, Y., & Karaoglan, I. (2015). Investigation of VIM, IMP, NDM-1, KPC and OXA-48 enzymes in Enterobacteriaceae strains. Pakistan Journal of Pharmaceutical Sciences, 28, 1127-1133.

Diene, S. M., & Rolain, J.-M. (2014). Carbapenemase genes and genetic platforms in gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clinical Microbiology and Infection, 20(9), 831-838.

Enwuru, N. V., Enwuru, C. A., & Adepoju-bello, A. (2011). Metallo-beta-lactamase production by Escherichia coli and Klebsiella species isolated from hospital and community subjects in Lagos, Nigeria. Natural Sciences, 9, 1-9.

Espinosa, I., Baez, M., Percedo, M. I., & Martinez, S. (2013). Evaluation of simplified DNA extraction methods for Streptococcus suis typing. Revista de Salud Animal, 35(1), 59-63.

Esterly, J. S., Wagner, J., McLaughlin, M. M., Postelnick, M. J., Qi, C., & Scheetz, M. H. (2012). Evaluation of clinical outcomes in patients with bloodstream infections due to gram-negative bacteria according to carbapenem MIC stratification. Antimicrobial Agents and Chemotherapy, 56, 4885-4890.

Evans, B. A., & Amyes, S. B. G. (2014). OXA β-lactamases. Clinical Microbiology Reviews, 27(2), 241-263.

Fasciana, T., Gentile, B., Aquilina, M., Ciammaruconi, A., Mascarella, C., Anselmo, A., Fortunato, A., Fillo, S., Petralito, G., Lista, F., & Giammanco, A. (2019). Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy. BMC Infectious Diseases, 19, 928.

Gelband, H., Miller-Petrie, M., Suraj, P., Gandra, S., Levinson, J., Barter, D., White, A., & Laxminarayan, R. (2015). The state of the world’s antibiotics. Washington DC: CDDEP; The Centre for Disease Dynamics, Economics and Policy.

Gupta, V., Bansal, N., Singla, N., & Chander, J. (2013). Occurrence and phenotypic detection of class A carbapenemases among Escherichia coli and Klebsiella pneumoniae blood isolates at a tertiary care center. Journal of Microbiology, Immunology and Infection, 46, 104-108.

Huang, S. R., Liu, M. F., Lin, C. F., & Shi, Z. Y. (2014). Molecular surveillance and clinical outcomes of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae infections. Journal of Microbiology, Immunology and Infection, 47, 187-196.

Jeon, H., Lee, J. H., Lee, J. J., Park, K. S., Karim, A. M., Lee, C. R., Jeong, B. C., & Lee, S. H. (2015). Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. International Journal of Molecular Sciences, 16, 9654-9692.

Mlynarcik, P., Roderova, M., & Kolar, M. (2016). Primer evaluation for PCR and its application for detection of carbapenemases in Enterobacteriaceae. Jundishapur Journal of Microbiology, 9(1), e29314.

Mohammed, Y., Zailani, S. B., & Onipede, A. O. (2015). Characterization of KPC, NDM and VIM type carbapenem resistance Enterobacteriaceae from North Eastern, Nigeria. Journal of Biological Sciences and Medicine, 3, 100-107.

Mukail, A., Tytler, B. A., Adeshina, G. O., & Igwe, J. C. (2019). Incidence of carbapenemase production among antibiotic resistant Klebsiella isolates in Zaria, Nigeria. BMC Research Notes, 36(1), 138-145.

Nordmann, P., Dortet, L., & Poirel, L. (2012). Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends in Molecular Medicine, 18, 263-272.

Nordmann, P., Naas, T., & Poirel, L. (2011). Global spread of carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17, 1791-1798.

Oduyebo, O., Falayi, O., Oshun, P., & Ettu, A. (2015). Phenotypic determination of carbapenemase producing Enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Nigerian Postgraduate Medical Journal, 22(4), 223-227.

Olowo-okere, A., Abdullahi, M. A., Ladidi, B. K., Suleiman, S., Tanko, N., Ungokore, H. Y., & Aliyu, A. (2019). Emergence of metallo-β-lactamase producing gram-negative bacteria in a hospital with no history of carbapenem usage in Northwest Nigeria. Ife Journal of Science, 21(2), 323-331.

Protonotariou, E., Meletis, G., Chatzopoulou, F., Malousi, A., Chatzimitriou, D., & Skoura, L. (2019). Emergence of Klebsiella pneumoniae ST11 co-producing NDM-1 and OXA-48 carbapenemases in Greece. Journal of Global Antimicrobial Resistance, 19, 81-82.

Srinivasan, R., Bhaskar, M., Kalaiarasan, E., & Narasimha, H. B. (2015). Prevalence and characterization of carbapenemase producing isolates of Enterobacteriaceae obtained from clinical and environmental samples: Efflux pump inhibitor study. African Journal of Microbiology Research, 9(17), 1200-1204.

Ssekatawa, K., Byarugaba, D. K., Wampande, E., & Ejobi, F. (2018). A systematic review: the current status of carbapenem resistance in East Africa. BMC Infectious Diseases, 11(629), 1-9.

United States Centers for Disease Control and Prevention, Department of Health and Human Services. (2016). Detect and protect against antibiotic resistance: CDC’s initiative to outsmart this threat. Retrieved from

Van der Zwaluw, K., Witteveen, S., Wielders, L., van Santen, M., Landman, F., de Haan, A., Schouls, L. M., & Bosch, T. (2020). Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014-2018 national laboratory surveillance. Clinical Microbiology and Infection, 26(1412), 7-12.

World Health Organization. (2015). Global action plan on antimicrobial resistance. Report no. WHA68/2015/REC/1. Geneva: The Organization.

World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Retrieved from http://www.who.int/medicenter/factsheets/fs194

World Health Organization. (2018). Factsheet on antimicrobial resistance. Retrieved from http://www.who.int/mediacenter/factsheets/fs194

Yao, B., Xiao, X., Wang, F., Zhou, L., Zhang, X., & Zhang, J. (2015). Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. International Journal of Infectious Diseases, 37, 107-112.

Zowawi, H. M., Sartor, A. L., Balkhy, H. H., Walsh, T. R., Al Johani, S. M., Al Jindan, R. Y., Alfaresi, M., Ibrahim, E., Al-Jardani, A., Al-Abri, S., Al Salman, J., Dashti, A. A., Kutbi, A. H., Schlebusch, S., Sidjabat, H. E., & Paterson, D. L. (2014). Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf Cooperation Council: Dominance of OXA-48 and NDM producers. Antimicrobial Agents and Chemotherapy, 58(6), 3085-3090.

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
261
View

Share