References
Al-Agamy, M. H., Aljallala, A., Radwana, H. H., & Shibl, A. M. (2018). Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. Journal of Infection and Public Health, 11(1), 64-68.
Alaka, O. O., Orimolade, E. A., Ojo, O. O., & Onipede, A. O. (2019). The phenotypic detection of carbapenem resistant organisms in orthopaedic wound infections in Ile-Ife, Nigeria. Acta Scientific Microbiology, 2(2), 35-42.
Anibijuwon, I. I., Gbala, I. D., & Adebisi, O. O. (2018). Carbapenem-resistant Enterobacteriaceae among in-patients of tertiary hospitals in Southwest, Nigeria. Notulae Scientia Biologicae, 10(3), 310-317.
Centers for Disease and Prevention. (2013). Vital signs: carbapenem-resistant Enterobacteriaceae. Morbidity and Mortality Weekly Report, 62, 165-170.
Chiu, S. H., Ma, L., Chan, M. C., Lin, Y. T., Fung, C. P., Wu, T. L., Chuang, Y. C., Lu, P. L., Wang, J. T., Lin, J. C., & Yeh, K. M. (2018). Carbapenem nonsusceptible Klebsiella pneumoniae in Taiwan: Dissemination and increasing resistance of carbapenemase producers during 2012–2015. Scientific Reports, 8, 8468.
Clinical and Laboratory Standards Institute (CLSI). (2015). Performance standards for antimicrobial susceptibility testing. 25th informational supplement, M100-S25 35(3), 112-126.
Clinical and Laboratory Standards Institute (CLSI). (2019). Performance standards for antimicrobial susceptibility testing. 29th supplement M100 39(3).
Codjoe, F. S., Eric, S., & Donkor, E. S. (2018). Carbapenem resistance: A review. Medical Science, 6(1), 1-28.
Demir, Y., Zer, Y., & Karaoglan, I. (2015). Investigation of VIM, IMP, NDM-1, KPC and OXA-48 enzymes in Enterobacteriaceae strains. Pakistan Journal of Pharmaceutical Sciences, 28, 1127-1133.
Diene, S. M., & Rolain, J.-M. (2014). Carbapenemase genes and genetic platforms in gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clinical Microbiology and Infection, 20(9), 831-838.
Enwuru, N. V., Enwuru, C. A., & Adepoju-bello, A. (2011). Metallo-beta-lactamase production by Escherichia coli and Klebsiella species isolated from hospital and community subjects in Lagos, Nigeria. Natural Sciences, 9, 1-9.
Espinosa, I., Baez, M., Percedo, M. I., & Martinez, S. (2013). Evaluation of simplified DNA extraction methods for Streptococcus suis typing. Revista de Salud Animal, 35(1), 59-63.
Esterly, J. S., Wagner, J., McLaughlin, M. M., Postelnick, M. J., Qi, C., & Scheetz, M. H. (2012). Evaluation of clinical outcomes in patients with bloodstream infections due to gram-negative bacteria according to carbapenem MIC stratification. Antimicrobial Agents and Chemotherapy, 56, 4885-4890.
Evans, B. A., & Amyes, S. B. G. (2014). OXA β-lactamases. Clinical Microbiology Reviews, 27(2), 241-263.
Fasciana, T., Gentile, B., Aquilina, M., Ciammaruconi, A., Mascarella, C., Anselmo, A., Fortunato, A., Fillo, S., Petralito, G., Lista, F., & Giammanco, A. (2019). Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy. BMC Infectious Diseases, 19, 928.
Gelband, H., Miller-Petrie, M., Suraj, P., Gandra, S., Levinson, J., Barter, D., White, A., & Laxminarayan, R. (2015). The state of the world’s antibiotics. Washington DC: CDDEP; The Centre for Disease Dynamics, Economics and Policy.
Gupta, V., Bansal, N., Singla, N., & Chander, J. (2013). Occurrence and phenotypic detection of class A carbapenemases among Escherichia coli and Klebsiella pneumoniae blood isolates at a tertiary care center. Journal of Microbiology, Immunology and Infection, 46, 104-108.
Huang, S. R., Liu, M. F., Lin, C. F., & Shi, Z. Y. (2014). Molecular surveillance and clinical outcomes of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae infections. Journal of Microbiology, Immunology and Infection, 47, 187-196.
Jeon, H., Lee, J. H., Lee, J. J., Park, K. S., Karim, A. M., Lee, C. R., Jeong, B. C., & Lee, S. H. (2015). Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. International Journal of Molecular Sciences, 16, 9654-9692.
Mlynarcik, P., Roderova, M., & Kolar, M. (2016). Primer evaluation for PCR and its application for detection of carbapenemases in Enterobacteriaceae. Jundishapur Journal of Microbiology, 9(1), e29314.
Mohammed, Y., Zailani, S. B., & Onipede, A. O. (2015). Characterization of KPC, NDM and VIM type carbapenem resistance Enterobacteriaceae from North Eastern, Nigeria. Journal of Biological Sciences and Medicine, 3, 100-107.
Mukail, A., Tytler, B. A., Adeshina, G. O., & Igwe, J. C. (2019). Incidence of carbapenemase production among antibiotic resistant Klebsiella isolates in Zaria, Nigeria. BMC Research Notes, 36(1), 138-145.
Nordmann, P., Dortet, L., & Poirel, L. (2012). Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends in Molecular Medicine, 18, 263-272.
Nordmann, P., Naas, T., & Poirel, L. (2011). Global spread of carbapenemase-producing Enterobacteriaceae. Emerging Infectious Diseases, 17, 1791-1798.
Oduyebo, O., Falayi, O., Oshun, P., & Ettu, A. (2015). Phenotypic determination of carbapenemase producing Enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Nigerian Postgraduate Medical Journal, 22(4), 223-227.
Olowo-okere, A., Abdullahi, M. A., Ladidi, B. K., Suleiman, S., Tanko, N., Ungokore, H. Y., & Aliyu, A. (2019). Emergence of metallo-β-lactamase producing gram-negative bacteria in a hospital with no history of carbapenem usage in Northwest Nigeria. Ife Journal of Science, 21(2), 323-331.
Protonotariou, E., Meletis, G., Chatzopoulou, F., Malousi, A., Chatzimitriou, D., & Skoura, L. (2019). Emergence of Klebsiella pneumoniae ST11 co-producing NDM-1 and OXA-48 carbapenemases in Greece. Journal of Global Antimicrobial Resistance, 19, 81-82.
Srinivasan, R., Bhaskar, M., Kalaiarasan, E., & Narasimha, H. B. (2015). Prevalence and characterization of carbapenemase producing isolates of Enterobacteriaceae obtained from clinical and environmental samples: Efflux pump inhibitor study. African Journal of Microbiology Research, 9(17), 1200-1204.
Ssekatawa, K., Byarugaba, D. K., Wampande, E., & Ejobi, F. (2018). A systematic review: the current status of carbapenem resistance in East Africa. BMC Infectious Diseases, 11(629), 1-9.
United States Centers for Disease Control and Prevention, Department of Health and Human Services. (2016). Detect and protect against antibiotic resistance: CDC’s initiative to outsmart this threat. Retrieved from
Van der Zwaluw, K., Witteveen, S., Wielders, L., van Santen, M., Landman, F., de Haan, A., Schouls, L. M., & Bosch, T. (2020). Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014-2018 national laboratory surveillance. Clinical Microbiology and Infection, 26(1412), 7-12.
World Health Organization. (2015). Global action plan on antimicrobial resistance. Report no. WHA68/2015/REC/1. Geneva: The Organization.
World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Retrieved from http://www.who.int/medicenter/factsheets/fs194
World Health Organization. (2018). Factsheet on antimicrobial resistance. Retrieved from http://www.who.int/mediacenter/factsheets/fs194
Yao, B., Xiao, X., Wang, F., Zhou, L., Zhang, X., & Zhang, J. (2015). Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. International Journal of Infectious Diseases, 37, 107-112.
Zowawi, H. M., Sartor, A. L., Balkhy, H. H., Walsh, T. R., Al Johani, S. M., Al Jindan, R. Y., Alfaresi, M., Ibrahim, E., Al-Jardani, A., Al-Abri, S., Al Salman, J., Dashti, A. A., Kutbi, A. H., Schlebusch, S., Sidjabat, H. E., & Paterson, D. L. (2014). Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf Cooperation Council: Dominance of OXA-48 and NDM producers. Antimicrobial Agents and Chemotherapy, 58(6), 3085-3090.