Engineering the Nanoscale: Transformative Roles of Nanomaterials in COVID-19 Diagnosis, Treatment, and Vaccine Development
Hossein Khani Meinagh1,2, Mansoureh Nazari V.3*
Nano Drug Sciences 3 (1) 1-8 https://doi.org/10.25163/nanotechnology.3110445
Submitted: 29 July 2025 Revised: 15 October 2025 Accepted: 20 October 2025 Published: 21 October 2025
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has highlighted the urgent need for innovative therapeutic and preventive strategies. Nanotechnology, with its ability to manipulate matter at the molecular scale, has emerged as a transformative approach in combating viral infections. This review explores how nanomaterials contribute to the design of antiviral drugs, vaccine platforms, and diagnostic tools specifically targeting COVID-19. Literature-based evidence was synthesized to evaluate current applications of nanoparticles and nanocrystals in antiviral drug delivery, their synthesis techniques, and their role in enhancing therapeutic efficacy. Studies demonstrate that nanocrystals improve drug solubility and bioavailability, while nanoparticle carriers—such as lipid nanoparticles (LNPs)—protect and deliver sensitive agents like mRNA, revolutionizing vaccine technology. The aerosolized nanocrystal formulation of remdesivir exemplifies how nanotechnology can convert conventional intravenous drugs into targeted pulmonary therapies, improving local efficacy and patient accessibility. Various classes of nanoparticles, including lipid-based, polymeric, metallic, and virus-like particles, offer distinctive advantages for precise, controlled, and safe delivery of therapeutics. Collectively, these advances underscore nanotechnology’s pivotal role in developing next-generation antiviral strategies. In conclusion, nanomedicine not only redefined the global response to COVID-19 but also established a durable scientific framework for addressing future pandemics through enhanced diagnostics, targeted therapies, and innovative vaccine designs.
Keywords: Nanoparticle, COVID-19, Nanomedicine, Drug delivery, Antiviral therapy
References
Abbas, R., Luo, J., Qi, X., Naz, A., Khan, I. A., Liu, H., . . . Wei, J. (2024). Silver nanoparticles: Synthesis, structure, properties and applications. Nanomaterials, 14(17), 1425.
Adhikari, A., Mandal, D., Rana, D., Nath, J., Bose, A., Orasugh, J. T., . . . Chattopadhyay, D. (2023). COVID-19 mitigation: nanotechnological intervention, perspective, and future scope. Materials Advances, 4(1), 52-78.
Aljabali, A. A., Hassan, S. S., Pabari, R. M., Shahcheraghi, S. H., Mishra, V., Charbe, N. B., . . . Almutary, A. G. (2021). The viral capsid as novel nanomaterials for drug delivery. Future Science OA, 7(9), FSO744.
Bhatia, S. (2016). Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications Natural polymer drug delivery systems: Nanoparticles, plants, and algae (pp. 33-93): Springer.
Bian, S.-W., Mudunkotuwa, I. A., Rupasinghe, T., & Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir, 27(10), 6059-6068.
Bijlard, A. C., Wald, S., Crespy, D., Taden, A., Wurm, F. R., & Landfester, K. (2017). Functional colloidal stabilization. Advanced Materials Interfaces, 4(1), 1600443.
Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature biotechnology, 33(9), 941-951.
Chen, G., Roy, I., Yang, C., & Prasad, P. N. (2016). Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical reviews, 116(5), 2826-2885.
Czapar, A. E., & Steinmetz, N. F. (2017). Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Current opinion in chemical biology, 38, 108-116.
Desai, N. (2012). Challenges in development of nanoparticle-based therapeutics. The AAPS journal, 14(2), 282-295.
Devadasu, V. R., Bhardwaj, V., & Kumar, M. R. (2013). Can controversial nanotechnology promise drug delivery? Chemical reviews, 113(3), 1686-1735.
Dizaj, S. M., Vazifehasl, Z., Salatin, S., Adibkia, K., & Javadzadeh, Y. (2015). Nanosizing of drugs: effect on dissolution rate. Research in pharmaceutical sciences, 10(2), 95-108.
El-Maradny, H. A., & Mneimneh, A. T. (2022). A Review on Aerosol Drug Delivery: Fundamentals, Classifications, Particle Size Analysis and the Engagement of Nanoparticulate Systems. Drug Delivery Letters, 12(4), 258-275.
Gao, L., Liu, G., Ma, J., Wang, X., Zhou, L., Li, X., & Wang, F. (2013). Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharmaceutical research, 30(2), 307-324.
Gatti, M., & De Ponti, F. (2021). Drug repurposing in the COVID-19 era: insights from case studies showing pharmaceutical peculiarities. Pharmaceutics, 13(3), 302.
Hervella, P., Lozano, V., Garcia-Fuentes, M., & Alonso, M. J. (2008). Nanomedicine: New challenges and opportunities in cancer therapy. Journal of Biomedical Nanotechnology, 4(3), 276-292.
Jain, K. K. (2008). Nanomedicine: application of nanobiotechnology in medical practice. Medical Principles and Practice, 17(2), 89-101.
Joseph, T. M., Kar Mahapatra, D., Esmaeili, A., Piszczyk, L., Hasanin, M. S., Kattali, M., . . . Thomas, S. (2023). Nanoparticles: taking a unique position in medicine. Nanomaterials, 13(3), 574.
Kasthoory, R. (2015). Barriers in the transition from research and development to commercialization of nanotechnology in Malaysia/Kasthoory Rajalingam. University of Malaya.
Kaur, R., & Badea, I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International journal of nanomedicine, 203-220.
Khan, Y., Sadia, H., Ali Shah, S. Z., Khan, M. N., Shah, A. A., Ullah, N., . . . Khedher, N. B. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386.
Kumar, R., Saha, P., & Dubey, A. (2025). Journal of Medicinal and Nanomaterials Chemistry.
Liu, Q., Kim, Y. J., Im, G. B., Zhu, J., Wu, Y., Liu, Y., & Bhang, S. H. (2021). Inorganic nanoparticles applied as functional therapeutics. Advanced Functional Materials, 31(12), 2008171.
Manco, G., Lampitella, E. A., Achanta, N. S., Catara, G., Marone, M., & Porzio, E. (2025). Sensing and Degradation of Organophosphorus Compounds by Exploitation of Heat-Loving Enzymes. Chemosensors, 13(1), 12.
Martins, T. P. C. (2019). Nanoparticles as carrier systems for protein delivery. Universidade de Lisboa (Portugal).
Maugeri, M., Nawaz, M., Papadimitriou, A., Angerfors, A., Camponeschi, A., Na, M., . . . Sundqvist, M. (2019). Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nature communications, 10(1), 4333.
Mejía-Méndez, J. L., Vazquez-Duhalt, R., Hernández, L. R., Sánchez-Arreola, E., & Bach, H. (2022). Virus-like particles: fundamentals and biomedical applications. International Journal of Molecular Sciences, 23(15), 8579.
Meskher, H., Ragdi, T., Thakur, A. K., Ha, S., Khelfaoui, I., Sathyamurthy, R., . . . Singh, P. (2024). A review on CNTs-based electrochemical sensors and biosensors: unique properties and potential applications. Critical reviews in analytical chemistry, 54(7), 2398-2421.
Moharir, K. S. (2025). Nanoparticle-Based Drug Delivery. Biological Flow Modelling, 189.
Nasir, S., Hussein, M. Z., Zainal, Z., & Yusof, N. A. (2018). Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials, 11(2), 295.
Pandey, P., & Dahiya, M. (2016). A brief review on inorganic nanoparticles. J Crit Rev, 3(3), 18-26.
Patil, N., Bhaskar, R., Vyavhare, V., Dhadge, R., Khaire, V., & Patil, Y. (2021). Overview on methods of synthesis of nanoparticles. International Journal of Current Pharmaceutical Research, 13(2), 11-16.
Pattabhiramaiah, M., Rajarathinam, B., & Shanthala, M. (2020). Nanoparticles and their application in folklore medicine as promising biotherapeutics. Functional bionanomaterials: From biomolecules to nanoparticles, 73-110.
Rafique, M., Tahir, M. B., Rafique, M. S., & Hamza, M. (2020). History and fundamentals of nanoscience and nanotechnology Nanotechnology and photocatalysis for environmental applications (pp. 1-25): Elsevier.
Ramsey, J. D., Stewart, I. E., Madden, E. A., Lim, C., Hwang, D., Heise, M. T., . . . Kabanov, A. V. (2022). Nanoformulated remdesivir with extremely low content of poly (2-oxazoline)-based stabilizer for aerosol treatment of covid-19. Macromolecular Bioscience, 22(8), 2200056.
Ray, P., Haideri, N., Haque, I., Mohammed, O., Chakraborty, S., Banerjee, S., . . . Banerjee, S. K. (2021). The impact of nanoparticles on the immune system: a gray zone of nanomedicine. Journal of Immunological Sciences, 5(1).
Sarangi, M. K., Padhi, S., Dheeman, S., Karn, S. K., Patel, L., Yi, D. K., & Nanda, S. S. (2022). Diagnosis, prevention, and treatment of coronavirus disease: a review. Expert Review of Anti-infective Therapy, 20(2), 243-266.
Schlich, M., Palomba, R., Costabile, G., Mizrahy, S., Pannuzzo, M., Peer, D., & Decuzzi, P. (2021). Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioengineering & Translational Medicine, 6(2), e10213.
Serrano-Aroca, Á., Takayama, K., Tuñón-Molina, A., Seyran, M., Hassan, S. S., Pal Choudhury, P., . . . Palù, G. (2021). Carbon-based nanomaterials: promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS nano, 15(5), 8069-8086.
Sheffey, V. V., Siew, E. B., Tanner, E. E., & Eniola-Adefeso, O. (2022). PLGA's plight and the role of stealth surface modification strategies in its use for intravenous particulate drug delivery. Advanced healthcare materials, 11(8), 2101536.
Soares, S., Sousa, J., Pais, A., & Vitorino, C. (2018). Nanomedicine: principles, properties, and regulatory issues. Frontiers in chemistry, 6, 360.
S?pringer, T. s., Ermini, M. L., Spacková, B., Jablonku, J., & Homola, J. (2014). Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Analytical Chemistry, 86(20), 10350-10356.
Taha, M. S., Akram, A., & Abdelbary, G. A. (2025). Unlocking the potential of remdesivir: innovative approaches to drug delivery. Drug Delivery and Translational Research, 1-24.
Tenic, T. (2014). Virus-and extracellular vesicle-inspired nanomedicine lessons learned from nature.
Torchilin, V. P. (2005). Lipid-core micelles for targeted drug delivery. Current Drug Delivery, 2(4), 319-327.
Tripathy, S., Rodrigues, J., & Shimpi, N. G. (2023). Top-down and Bottom-up Approaches for Synthesis of Nanoparticles. Nanobiomaterials Perspect. Med. Appl. Diagn. Treat. Dis, 145, 92-130.
Vartak, R., Patil, S. M., Saraswat, A., Patki, M., Kunda, N. K., & Patel, K. (2021). Aerosolized nanoliposomal carrier of remdesivir: an effective alternative for COVID-19 treatment in vitro. Nanomedicine, 16(14), 1187-1202.
Wang, N., Cheng, X., Li, N., Wang, H., & Chen, H. (2019). Nanocarriers and their loading strategies. Advanced healthcare materials, 8(6), 1801002.
Wilson, B., & Geetha, K. M. (2022). Lipid nanoparticles in the development of mRNA vaccines for COVID-19. Journal of drug delivery science and technology, 74, 103553.
Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596.