Advances in Recycling and Resource Recovery of Post-Consumer Polyethylene Terephthalate (PET) Waste for Sustainable Waste Management and Circular Economy
Shaharia Ahmed 1*, Du Shan 1, Weitao Zhou 2
Energy Environment & Economy 3(1) 1-19 https://doi.org/10.25163/energy.3110048
Submitted: 01 January 2025 Revised: 05 March 2025 Published: 13 March 2025
Abstract
Polyethylene terephthalate (PET) is widely used in textiles, packaging, and consumer goods; however, its extensive consumption has led to significant environmental challenges due to post-consumer waste accumulation. This review explores recent advancements in PET recycling, focusing on chemical and enzymatic methods as sustainable alternatives to traditional mechanical recycling. Chemical recycling processes, including glycolysis, methanolysis, and hydrolysis, break PET into monomers, enabling the production of high-quality recycled materials. Enzymatic recycling, utilizing PET-degrading enzymes, offers an eco-friendly approach with mild reaction conditions and high specificity. The review compares these methods in terms of efficiency, scalability, energy requirements, and life cycle assessments (LCAs), highlighting enzymatic recycling’s lower environmental impact. Additionally, economic feasibility and large-scale implementation challenges, including contamination and cost-effectiveness, are discussed. Despite technological advancements, further innovation and policy support are essential to optimize these recycling strategies, foster a circular economy, and mitigate PET-related environmental pollution.Keywords: waste polyethylene terephthalate, sustainable recycling techniques, high-quality products, reducing carbon dioxide (CO2) emission.
References
Abedsoltan, H. (2023). A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. In Polymer Engineering and Science (Vol. 63, Issue 9, pp. 2651–2674). https://doi.org/10.1002/pen.26406
Acar, I., Bal, A., & Güçlü, G. (2012). Adsorption of Basic Dyes from Aqueous Solutions by Depolymerization Products of Post-Consumer PET Bottles. Clean - Soil, Air, Water, 40(3). https://doi.org/10.1002/clen.201100073
Achilias, D. S., Redhwi, H. H., Siddiqui, M. N., Nikolaidis, A. K., Bikiaris, D. N., & Karayannidis, G. P. (2010). Glycolytic depolymerization of PET waste in a microwave reactor. Journal of Applied Polymer Science, 118(5), 3066–3073. https://doi.org/10.1002/app.32737
Adelodun, A. A. (2021). Plastic Recovery and Utilization: From Ocean Pollution to Green Economy. In Frontiers in Environmental Science (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fenvs.2021.683403
Afgan, S., Ullah, N., Sulaiman, M., Ali, I., Iqbal, T., Younas, M., & Rezakazemi, M. (2022). High strength insulating polymeric composite based on recycled/virgin polyethylene terephthalate (PET) reinforced with hydrous magnesium silicate (talc). Journal of Materials Research and Technology, 21. https://doi.org/10.1016/j.jmrt.2022.10.126
Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25(1), 53–64. https://doi.org/10.1016/J.EJPE.2015.03.001
Asressu, K. H., & Wang, C. C. (2019). SnCl4-catalyzed solvent-free acetolysis of 2,7-anhydrosialic acid derivatives. Beilstein Journal of Organic Chemistry, 15. https://doi.org/10.3762/bjoc.15.295
Babaei, M., Jalilian, M., & Shahbaz, K. (2024). Chemical recycling of Polyethylene terephthalate: A mini-review. In Journal of Environmental Chemical Engineering (Vol. 12, Issue 3, p. 112507). https://doi.org/10.1016/j.jece.2024.112507
Beghetto, V., Sole, R., Buranello, C., Al-Abkal, M., & Facchin, M. (2021). Recent advancements in plastic packaging recycling: A mini-review. Materials, 14(17). https://doi.org/10.3390/ma14174782
Benavides, P. T., Dunn, J. B., Han, J., Biddy, M., & Markham, J. (2018). Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry and Engineering, 6(8). https://doi.org/10.1021/acssuschemeng.8b00750
Bohre, A., Jadhao, P. R., Tripathi, K., Pant, K. K., Likozar, B., & Saha, B. (2023). Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. In ChemSusChem (Vol. 16, Issue 14). https://doi.org/10.1002/cssc.202300142
Brouwer, M. T., Alvarado Chacon, F., & Thoden van Velzen, E. U. (2020). Effect of recycled content and rPET quality on the properties of PET bottles, part III: Modelling of repetitive recycling. Packaging Technology and Science, 33(9). https://doi.org/10.1002/pts.2489
Bui, T. D., Tseng, J. W., Tseng, M. L., & Lim, M. K. (2022). Opportunities and challenges for solid waste reuse and recycling in emerging economies: A hybrid analysis. Resources, Conservation and Recycling, 177. https://doi.org/10.1016/j.resconrec.2021.105968
Cao, F., Wang, L., Zheng, R., Guo, L., Chen, Y., & Qian, X. (2022). Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products. In RSC Advances (Vol. 12, Issue 49). https://doi.org/10.1039/d2ra06499e
Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., & Miguel, L. J. (2014). Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy, 77. https://doi.org/10.1016/j.energy.2014.09.063
Carniel, A., Waldow, V. de A., & Castro, A. M. de. (2021). A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes. In Biotechnology Advances (Vol. 52). https://doi.org/10.1016/j.biotechadv.2021.107811
Cecchini, M., Signori, F., Pingue, P., Bronco, S., Ciardelli, F., & Beltram, F. (2008). High-resolution polyethylene terephthalate (PET) hot embossing at low temperature: Thermal, mechanical, and optical analysis of nanopatterned films. Langmuir, 24(21), 12581–12586. https://doi.org/10.1021/la801706q
Celik, Y., Shamsuyeva, M., & Endres, H. J. (2022). Thermal and Mechanical Properties of the Recycled and Virgin PET—Part I. Polymers, 14(7). https://doi.org/10.3390/polym14071326
Chen, A., Yang, M. Q., Wang, S., & Qian, Q. (2021). Recent Advancements in Photocatalytic Valorization of Plastic Waste to Chemicals and Fuels. In Frontiers in Nanotechnology (Vol. 3). https://doi.org/10.3389/fnano.2021.723120
Choudhury, M., Sahoo, S., Samanta, P., Tiwari, A., Tiwari, A., Chadha, U., Bhardwaj, P., Nalluri, A., Eticha, T. K., & Chakravorty, A. (2022). COVID-19: An Accelerator for Global Plastic Consumption and Its Implications. In Journal of Environmental and Public Health (Vol. 2022). https://doi.org/10.1155/2022/1066350
CHRISPIM, M. C. (2021). Resource recovery from wastewater treatment: challenges, opportunities and guidance for planning and implementation. Frontiers in Neuroscience, 14(1).
Cui, Y., Deng, C., Fan, L., Qiu, Y., & Zhao, L. (2023). Progress in the biosynthesis of bio-based PET and PEF polyester monomers. In Green Chemistry (Vol. 25, Issue 15). https://doi.org/10.1039/d3gc00104k
Davidson, M. G., Furlong, R. A., & McManus, M. C. (2021). Developments in the life cycle assessment of chemical recycling of plastic waste – A review. In Journal of Cleaner Production (Vol. 293, p. 126163). https://doi.org/10.1016/j.jclepro.2021.126163
Day, C., & Day, G. (2017). Climate change, fossil fuel prices and depletion: The rationale for a falling export tax. Economic Modelling, 63. https://doi.org/10.1016/j.econmod.2017.01.006
Dedieu, I., Peyron, S., Gontard, N., & Aouf, C. (2022). The thermo-mechanical recyclability potential of biodegradable biopolyesters: Perspectives and limits for food packaging application. In Polymer Testing (Vol. 111). https://doi.org/10.1016/j.polymertesting.2022.107620
Demirel, B., Yara?, A., & Elçiçek, H. (2011). Crystallization Behavior of PET Materials. BAÜ Fen Bil. Enst. Dergisi Cilt, 13(1), 26–35.
Dhaka, V., Singh, S., Anil, A. G., Sunil Kumar Naik, T. S., Garg, S., Samuel, J., Kumar, M., Ramamurthy, P. C., & Singh, J. (2022). Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. In Environmental Chemistry Letters (Vol. 20, Issue 3, pp. 1777–1800). https://doi.org/10.1007/s10311-021-01384-8
Doan, H. N., Phong Vo, P., Hayashi, K., Kinashi, K., Sakai, W., & Tsutsumi, N. (2020). Recycled PET as a PDMS-Functionalized electrospun fibrous membrane for oil-water separation. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.103921
Genta, M., Iwaya, T., Sasaki, M., Goto, M., & Hirose, T. (2005). Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol. Industrial and Engineering Chemistry Research, 44(11). https://doi.org/10.1021/ie0488187
Gerassimidou, S., Lanska, P., Hahladakis, J. N., Lovat, E., Vanzetto, S., Geueke, B., Groh, K. J., Muncke, J., Maffini, M., Martin, O. V., & Iacovidou, E. (2022). Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. In Journal of Hazardous Materials (Vol. 430). https://doi.org/10.1016/j.jhazmat.2022.128410
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. 3(7), e1700782. https://doi.org/DOI:10.1126/sciadv.1700782
Ghasemlou, M., Barrow, C. J., & Adhikari, B. (2024). The future of bioplastics in food packaging: An industrial perspective. In Food Packaging and Shelf Life (Vol. 43, p. 101279). https://doi.org/10.1016/j.fpsl.2024.101279
Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype. In Materials Advances (Vol. 3, Issue 4, pp. 1974–1992). https://doi.org/10.1039/d1ma01112j
Grumezescu, A. M., Stoica, A. E., Dima-Balcescu, M. ?tefan, Chircov, C., Gharbia, S., Balta, C., Ro?u, M., Herman, H., Holban, A. M., Ficai, A., Vasile, B. S., Andronescu, E., Chifiriuc, M. C., & Hermenean, A. (2019). Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. Journal of Clinical Medicine, 8(7). https://doi.org/10.3390/jcm8071039
Gururani, P., Bhatnagar, P., Dogra, P., Chandra Joshi, H., Chauhan, P. K., Vlaskin, M. S., Chandra Joshi, N., Kurbatova, A., Irina, A., & Kumar, V. (2023). Bio-based food packaging materials: A sustainable and Holistic approach for cleaner environment- a review. Current Research in Green and Sustainable Chemistry, 7. https://doi.org/10.1016/j.crgsc.2023.100384
Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. In Environmental Challenges (Vol. 13). https://doi.org/10.1016/j.envc.2023.100747
Han, B., Jin, X., Sun, R., Li, H., Liang, X., & Zhou, Y. (2023). Understanding land-use sustainability with a systematical framework: An evaluation case of China. Land Use Policy, 132. https://doi.org/10.1016/j.landusepol.2023.106767
Hansen, T., & Pollin, R. (2020). Economics and climate justice activism: assessing the financial impact of the fossil fuel divestment movement. Review of Social Economy. https://doi.org/10.1080/00346764.2020.1785539
He, J., Li, Z., Zhang, X., Wang, H., Dong, W., Du, E., Chang, S., Ou, X., Guo, S., Tian, Z., Gu, A., Teng, F., Hu, B., Yang, X., Chen, S., Yao, M., Yuan, Z., Zhou, L., Zhao, X., … Zhang, D. (2022). Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environmental Science and Ecotechnology, 9. https://doi.org/10.1016/j.ese.2021.100134
He, Y., Deng, X., Jiang, L., Hao, L., Shi, Y., Lyu, M., Zhang, L., & Wang, S. (2024). Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. In Science of the Total Environment (Vol. 906). https://doi.org/10.1016/j.scitotenv.2023.167850
Hiraga, K., Taniguchi, I., Yoshida, S., Kimura, Y., & Oda, K. (2019). Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution. EMBO Reports. https://doi.org/10.15252/embr.201949365
Huayu Fang, E. Z. D. W. G. Y. J. C. T. L. J. W. J. C. S. L. (2021). method for recycling continuous alcoholysis of waste polyester material. https://doi.org/10.07.2019
Ingrao, C., Lo Giudice, A., Tricase, C., Rana, R., Mbohwa, C., & Siracusa, V. (2014). Recycled-PET fibre based panels for building thermal insulation: Environmental impact and improvement potential assessment for a greener production. Science of the Total Environment, 493. https://doi.org/10.1016/j.scitotenv.2014.06.022
Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., & Azapagic, A. (2021). Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Science of the Total Environment, 769. https://doi.org/10.1016/j.scitotenv.2020.144483
Jiao, H., Ali, S. S., Alsharbaty, M. H. M., Elsamahy, T., Abdelkarim, E., Schagerl, M., Al-Tohamy, R., & Sun, J. (2024). A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. In Ecotoxicology and Environmental Safety (Vol. 271). https://doi.org/10.1016/j.ecoenv.2024.115942
Jones, H., Saffar, F., Koutsos, V., & Ray, D. (2021). Polyolefins and polyethylene terephthalate package wastes: Recycling and use in composites. In Energies (Vol. 14, Issue 21). https://doi.org/10.3390/en14217306
Kang, M. J., Yu, H. J., Jegal, J., Kim, H. S., & Cha, H. G. (2020). Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chemical Engineering Journal, 398. https://doi.org/10.1016/j.cej.2020.125655
Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. In Agronomy for Sustainable Development (Vol. 32, Issue 2). https://doi.org/10.1007/s13593-011-0068-3
Kassab, A., Al Nabhani, D., Mohanty, P., Pannier, C., & Ayoub, G. Y. (2023). Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. In Polymers (Vol. 15, Issue 19). https://doi.org/10.3390/polym15193881
Korley, L. S. T. J., Epps, T. H., Helms, B. A., & Ryan, A. J. (2021). Toward polymer upcycling-adding value and tackling circularity. In Science (Vol. 373, Issue 6550). https://doi.org/10.1126/science.abg4503
Kullmann, F., Markewitz, P., Kotzur, L., & Stolten, D. (2022). THE ROLE OF HYDROGEN FOR THE DEFOSSILISATION OF THE GERMAN CHEMICAL INDUSTRY. Proceedings of WHEC 2022 - 23rd World Hydrogen Energy Conference: Bridging Continents by H2.
Laldinpuii, Z., Lalhmangaihzuala, S., Pachuau, Z., & Vanlaldinpuia, K. (2021). Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst. Waste Management, 126. https://doi.org/10.1016/j.wasman.2021.02.056
Laub, J. A. (1999). Assessing the servant organization; Development of the Organizational Leadership Assessment (OLA) model. Dissertation Abstracts International. Procedia - Social and Behavioral Sciences, 1(2).
Lee, J. T., Kang, M., & Bae, J. Y. (2024). The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling. International Journal of Molecular Sciences, 25(4), 2295. https://doi.org/10.3390/ijms25042295
Levy, M. (2017). Life Cycle Analysis-Strengths and Limitations of LCA. Encyclopedia of Sustainable Technologies, 233–236. https://doi.org/10.1016/B978-0-12-409548-9.10062-4
Li, J., Shao, J., Yao, X., & Li, J. (2023). Life cycle analysis of the economic costs and environmental benefits of photovoltaic module waste recycling in China. Resources, Conservation and Recycling, 196. https://doi.org/10.1016/j.resconrec.2023.107027
Mastrolia, C., Giaquinto, D., Gatz, C., Pervez, M. N., Hasan, S. W., Zarra, T., Li, C. W., Belgiorno, V., & Naddeo, V. (2022). Plastic Pollution: Are Bioplastics the Right Solution? In Water (Vol. 14, Issue 22). https://doi.org/10.3390/w14223596
McDonnell, C., & Gupta, J. (2024). Beyond divest vs. engage: a review of the role of institutional investors in an inclusive fossil fuel phase-out. In Climate Policy (Vol. 24, Issue 3). https://doi.org/10.1080/14693062.2023.2261900
Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? In Current Research in Green and Sustainable Chemistry (Vol. 5). https://doi.org/10.1016/j.crgsc.2022.100273
Muringayil Joseph, T., Azat, S., Ahmadi, Z., Moini Jazani, O., Esmaeili, A., Kianfar, E., Haponiuk, J., & Thomas, S. (2024). Polyethylene terephthalate (PET) recycling: A review. Case Studies in Chemical and Environmental Engineering, 9(9), 100673. https://doi.org/10.1016/J.CSCEE.2024.100673
Muszynski, M., Nowicki, J., Zygadlo, M., & Dudek, G. (2023). Comparsion of Catalyst Effectiveness in Different Chemical Depolymerization Methods of Poly (ethylene terephthalate). In Molecules (Vol. 28, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/molecules28176385
Olam, M. (2023). Mechanical and Thermal Properties of HDPE/PET Microplastics, Applications, and Impact on Environment and Life. https://doi.org/10.5772/intechopen.110390
Pahnila, M., Koskela, A., Sulasalmi, P., & Fabritius, T. (2023). A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. In Energies (Vol. 16, Issue 19). https://doi.org/10.3390/en16196936
Peng, Y., Yang, J., Deng, C., Deng, J., Shen, L., & Fu, Y. (2023). Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38998-1
Perera, A. T. K., Song, K., Umezu, S., & Sato, H. (2023). Recent progress in functionalized plastic 3D printing in creation of metallized architectures. In Materials and Design (Vol. 232). https://doi.org/10.1016/j.matdes.2023.112044
Pierrat, É., Laurent, A., Dorber, M., Rygaard, M., Verones, F., & Hauschild, M. (2023). Advancing water footprint assessments: Combining the impacts of water pollution and scarcity. Science of the Total Environment, 870. https://doi.org/10.1016/j.scitotenv.2023.161910
Plantinga, A., & Scholtens, B. (2021). The financial impact of fossil fuel divestment. Climate Policy, 21(1). https://doi.org/10.1080/14693062.2020.1806020
Pollock, D. J., & Kratz, R. F. (1980). Polymer molecular weights. Methods in Experimental Physics, 16. https://doi.org/10.1016/S0076-695X(08)60514-1
Qin, Z. H., Mou, J. H., Chao, C. Y. H., Chopra, S. S., Daoud, W., Leu, S. Y., Ning, Z., Tso, C. Y., Chan, C. K., Tang, S., Hathi, Z. J., Haque, M. A., Wang, X., & Lin, C. S. K. (2021). Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. In ChemSusChem (Vol. 14, Issue 19). https://doi.org/10.1002/cssc.202100752
Qu, C., Ito, K., Katsuyama, I., Mitani, T., Kashimura, K., & Watanabe, T. (2020). Directly Microwave-Accelerated Cleavage of C−C and C−O Bonds of Lignin by Copper Oxide and H2O2. ChemSusChem, 13(17), 4510–4518. https://doi.org/10.1002/cssc.202000502
Radadiya, R., Shahabuddin, S., & Gaur, R. (2022). Waste to Best: Chemical Recycling of Polyethylene Terephthalate (PET) for Generation of Useful Molecules. In Springer Proceedings in Materials (Vol. 15, pp. 245–258). https://doi.org/10.1007/978-981-19-2572-6_19
Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. https://doi.org/10.1016/J.WASMAN.2017.07.044
Recycling of Polyethylene Terephthalate Bottles. (2019). In Recycling of Polyethylene Terephthalate Bottles. https://doi.org/10.1016/c2016-0-01084-7
Salvador, M., Abdulmutalib, U., Gonzalez, J., Kim, J., Smith, A. A., Faulon, J. L., Wei, R., Zimmermann, W., & Jimenez, J. I. (2019). Microbial genes for a circular and sustainable bio-PET economy. In Genes (Vol. 10, Issue 5). https://doi.org/10.3390/genes10050373
Sanghavi, R., Intan, N. N., Xie, S., Lin, H., & Pfaendtner, J. (2024). Reaction Pathway Analysis of PET Deconstruction via Methanolysis and Tertiary Amine Catalysts. The Journal of Physical Chemistry A, 128(29), 5883–5891. https://doi.org/10.1021/acs.jpca.4c02276
Santos, S. M., Assis, A. C., Gomes, L., Nobre, C., & Brito, P. (2022). Waste Gasification Technologies: A Brief Overview. Waste, 1(1). https://doi.org/10.3390/waste1010011
Sarda, P., Hanan, J. C., Lawrence, J. G., & Allahkarami, M. (2022). Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. In Journal of Polymer Science (Vol. 60, Issue 1, pp. 7–31). https://doi.org/10.1002/pol.20210495
Sarfraz, J., Gulin-Sarfraz, T., Nilsen-Nygaard, J., & Pettersen, M. K. (2021). Nanocomposites for food packaging applications: An overview. In Nanomaterials (Vol. 11, Issue 1). https://doi.org/10.3390/nano11010010
Saricam, C., & Okur, N. (2018). Polyester Usage for Automotive Applications. In Polyester - Production, Characterization and Innovative Applications. https://doi.org/10.5772/intechopen.74206
Sarioglu, E. (2019). An investigation on performance optimization of r-PET/cotton and v-PET/cotton knitted fabric. International Journal of Clothing Science and Technology, 31(3), 439–452. https://doi.org/10.1108/IJCST-08-2018-0108
Scherer, C., Emberger-Klein, A., & Menrad, K. (2017). Biogenic product alternatives for children: Consumer preferences for a set of sand toys made of bio-based plastic. Sustainable Production and Consumption, 10. https://doi.org/10.1016/j.spc.2016.11.001
Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. In Macromolecular Rapid Communications (Vol. 42, Issue 3). https://doi.org/10.1002/marc.202000415
Seidl, L. G., Lee, R. P., Keller, F., & Meyer, B. (2019). Chemical utilization of carbonaceous waste and lignite - A case study of sustainable olefin production in Germany. DGMK Tagungsbericht, 2019(3).
Sevilla, M. E., Garcia, M. D., Perez-Castillo, Y., Armijos-Jaramillo, V., Casado, S., Vizuete, K., Debut, A., & Cerda-Mejía, L. (2023). Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase. Polymers, 15(7). https://doi.org/10.3390/polym15071779
Shi, L., & Zhu, L. (2024). Recent Advances and Challenges in Enzymatic Depolymerization and Recycling of PET Wastes. ChemBioChem, 25(2), e202300578. https://doi.org/10.1002/cbic.202300578
Shukla, S. R., & Harad, A. M. (2006). Aminolysis of polyethylene terephthalate waste. Polymer Degradation and Stability, 91(8). https://doi.org/10.1016/j.polymdegradstab.2005.11.005
Siddiqui, M. N., Redhwi, H. H., & Achilias, D. S. (2012). Recycling of poly(ethylene terephthalate) waste through methanolic pyrolysis in a microwave reactor. Journal of Analytical and Applied Pyrolysis, 98. https://doi.org/10.1016/j.jaap.2012.09.007
Sinha, V., Patel, M. R., & Patel, J. V. (2010). Pet waste management by chemical recycling: A review. In Journal of Polymers and the Environment (Vol. 18, Issue 1). https://doi.org/10.1007/s10924-008-0106-7
Slusarczyk, C., Sieradzka, M., Fabia, J., & Fryczkowski, R. (2020). Supermolecular structure of poly(butylene terephthalate) fibers formed with the addition of reduced graphene oxide. Polymers, 12(7), 1456. https://doi.org/10.3390/polym12071456
Statista Research Department. (2024). Global market volume of PET 2015-2030. https://www.statista.com/statistics/1245264/polyethylene-terephthalate-market-volume-worldwide
Stegmann, P., Gerritse, T., Shen, L., Londo, M., Puente, Á., & Junginger, M. (2023). The global warming potential and the material utility of PET and bio-based PEF bottles over multiple recycling trips. Journal of Cleaner Production, 395. https://doi.org/10.1016/j.jclepro.2023.136426
Sulyman, M., Haponiuk, J., & Formela, K. (2016). Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review. International Journal of Environmental Science and Development, 7(2), 100–108. https://doi.org/10.7763/IJESD.2016.V7.749
Telli, A., & Özdil, N. (2015). Effect of recycled PET fibers on the performance properties of knitted fabrics. Journal of Engineered Fibers and Fabrics, 10(2). https://doi.org/10.1177/155892501501000206
Tiwari, R., Azad, N., Dutta, D., Yadav, B. R., & Kumar, S. (2023). A critical review and future perspective of plastic waste recycling. In Science of the Total Environment (Vol. 881, p. 163433). https://doi.org/10.1016/j.scitotenv.2023.163433
Trafczynski, M., Urbaniec, K., Alabrudzinski, S., Mikulcic, H., & Duic, N. (2024). The optimization and engineering at the service of the sustainable development of energy, water and environment systems. In Optimization and Engineering (Vol. 25, Issue 1). https://doi.org/10.1007/s11081-023-09872-2
Trucillo, P. (2024). Biomaterials for Drug Delivery and Human Applications. In Materials (Vol. 17, Issue 2). https://doi.org/10.3390/ma17020456
Trzepiecinski, T., Batu, T., Kibrete, F., & Lemu, H. G. (2023). Application of Composite Materials for Energy Generation Devices. In Journal of Composites Science (Vol. 7, Issue 2). https://doi.org/10.3390/jcs7020055
Tumu, K., Vorst, K., & Curtzwiler, G. (2023). Global plastic waste recycling and extended producer responsibility laws. In Journal of Environmental Management (Vol. 348). https://doi.org/10.1016/j.jenvman.2023.119242
Uekert, T., Kasap, H., & Reisner, E. (2019). Photoreforming of Nonrecyclable Plastic Waste over a Carbon Nitride/Nickel Phosphide Catalyst. Journal of the American Chemical Society, 141(38), 15201–15210. https://doi.org/10.1021/jacs.9b06872
Uekert, T., Singh, A., DesVeaux, J. S., Ghosh, T., Bhatt, A., Yadav, G., Afzal, S., Walzberg, J., Knauer, K. M., Nicholson, S. R., Beckham, G. T., & Carpenter, A. C. (2023). Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics. ACS Sustainable Chemistry and Engineering, 11(3). https://doi.org/10.1021/acssuschemeng.2c05497
Usman, I. U., & Kunlin, M. (2024). Influence of Polyethylene Terephthalate (PET) utilization on the engineering properties of asphalt mixtures: A review. In Construction and Building Materials (Vol. 411). https://doi.org/10.1016/j.conbuildmat.2023.134439
Vamvuka, D. (2011). Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview. In International Journal of Energy Research (Vol. 35, Issue 10). https://doi.org/10.1002/er.1804
Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. In Foods (Vol. 12, Issue 5). https://doi.org/10.3390/foods12051057
Vlasopoulos, A., Malinauskaite, J., Zabnienska-Góra, A., & Jouhara, H. (2023). Life cycle assessment of plastic waste and energy recovery. Energy, 277. https://doi.org/10.1016/j.energy.2023.127576
Wang, H., Liu, Y., Li, Z., Zhang, X., Zhang, S., & Zhang, Y. (2009). Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. European Polymer Journal, 45(5). https://doi.org/10.1016/j.eurpolymj.2009.01.025
Worku, B. G., & Wubieneh, T. A. (2021). Mechanical Properties of Composite Materials from Waste Poly(ethylene terephthalate) Reinforced with Glass Fibers and Waste Window Glass. International Journal of Polymer Science, 2021. https://doi.org/10.1155/2021/3320226
Xayachak, T., Haque, N., Parthasarathy, R., King, S., Emami, N., Lau, D., & Pramanik, B. K. (2022). Pyrolysis for plastic waste management: An engineering perspective. Journal of Environmental Chemical Engineering, 10(6). https://doi.org/10.1016/j.jece.2022.108865
Yang, W., Liu, R., Li, C., Song, Y., & Hu, C. (2021). Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Waste Management, 135. https://doi.org/10.1016/j.wasman.2021.09.009
Zhang, L. N., Liu, L. Z., Yue, Q. F., & Zhu, C. C. (2014). From aminolysis product of PET waste to value-added products of polymer and assistants. Polymers and Polymer Composites, 22(1). https://doi.org/10.1177/096739111402200102
Zhang, W., & Xu, J. (2022). Advanced lightweight materials for Automobiles: A review. In Materials and Design (Vol. 221). https://doi.org/10.1016/j.matdes.2022.110994
Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Anderson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., & Zhu, H. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. In Matter (Vol. 6, Issue 1). https://doi.org/10.1016/j.matt.2022.11.006
Zhou, H., Ren, Y., Li, Z., Xu, M., Wang, Y., Ge, R., Kong, X., Zheng, L., & Duan, H. (2021). Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25048-x
View Dimensions
View Altmetric
Save
Citation
View
Share