Energy, Environment and Sustainable Sciences
REVIEWS   (Open Access)

Advances in Recycling and Resource Recovery of Post-Consumer Polyethylene Terephthalate (PET) Waste for Sustainable Waste Management and Circular Economy

Shaharia Ahmed 1*, Du Shan 1, Weitao Zhou 2

+ Author Affiliations

Energy Environment & Economy 3(1) 1-19 https://doi.org/10.25163/energy.3110048

Submitted: 01 January 2025  Revised: 05 March 2025  Published: 13 March 2025 

Abstract

Polyethylene terephthalate (PET) is widely used in textiles, packaging, and consumer goods; however, its extensive consumption has led to significant environmental challenges due to post-consumer waste accumulation. This review explores recent advancements in PET recycling, focusing on chemical and enzymatic methods as sustainable alternatives to traditional mechanical recycling. Chemical recycling processes, including glycolysis, methanolysis, and hydrolysis, break PET into monomers, enabling the production of high-quality recycled materials. Enzymatic recycling, utilizing PET-degrading enzymes, offers an eco-friendly approach with mild reaction conditions and high specificity. The review compares these methods in terms of efficiency, scalability, energy requirements, and life cycle assessments (LCAs), highlighting enzymatic recycling’s lower environmental impact. Additionally, economic feasibility and large-scale implementation challenges, including contamination and cost-effectiveness, are discussed. Despite technological advancements, further innovation and policy support are essential to optimize these recycling strategies, foster a circular economy, and mitigate PET-related environmental pollution.Keywords: waste polyethylene terephthalate, sustainable recycling techniques, high-quality products, reducing carbon dioxide (CO2) emission.

References

Abedsoltan, H. (2023). A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. In Polymer Engineering and Science (Vol. 63, Issue 9, pp. 2651–2674). https://doi.org/10.1002/pen.26406

Acar, I., Bal, A., & Güçlü, G. (2012). Adsorption of Basic Dyes from Aqueous Solutions by Depolymerization Products of Post-Consumer PET Bottles. Clean - Soil, Air, Water, 40(3). https://doi.org/10.1002/clen.201100073

Achilias, D. S., Redhwi, H. H., Siddiqui, M. N., Nikolaidis, A. K., Bikiaris, D. N., & Karayannidis, G. P. (2010). Glycolytic depolymerization of PET waste in a microwave reactor. Journal of Applied Polymer Science, 118(5), 3066–3073. https://doi.org/10.1002/app.32737

Adelodun, A. A. (2021). Plastic Recovery and Utilization: From Ocean Pollution to Green Economy. In Frontiers in Environmental Science (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fenvs.2021.683403

Afgan, S., Ullah, N., Sulaiman, M., Ali, I., Iqbal, T., Younas, M., & Rezakazemi, M. (2022). High strength insulating polymeric composite based on recycled/virgin polyethylene terephthalate (PET) reinforced with hydrous magnesium silicate (talc). Journal of Materials Research and Technology, 21. https://doi.org/10.1016/j.jmrt.2022.10.126

Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25(1), 53–64. https://doi.org/10.1016/J.EJPE.2015.03.001

Asressu, K. H., & Wang, C. C. (2019). SnCl4-catalyzed solvent-free acetolysis of 2,7-anhydrosialic acid derivatives. Beilstein Journal of Organic Chemistry, 15. https://doi.org/10.3762/bjoc.15.295

Babaei, M., Jalilian, M., & Shahbaz, K. (2024). Chemical recycling of Polyethylene terephthalate: A mini-review. In Journal of Environmental Chemical Engineering (Vol. 12, Issue 3, p. 112507). https://doi.org/10.1016/j.jece.2024.112507

Beghetto, V., Sole, R., Buranello, C., Al-Abkal, M., & Facchin, M. (2021). Recent advancements in plastic packaging recycling: A mini-review. Materials, 14(17). https://doi.org/10.3390/ma14174782

Benavides, P. T., Dunn, J. B., Han, J., Biddy, M., & Markham, J. (2018). Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustainable Chemistry and Engineering, 6(8). https://doi.org/10.1021/acssuschemeng.8b00750

Bohre, A., Jadhao, P. R., Tripathi, K., Pant, K. K., Likozar, B., & Saha, B. (2023). Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. In ChemSusChem (Vol. 16, Issue 14). https://doi.org/10.1002/cssc.202300142

Brouwer, M. T., Alvarado Chacon, F., & Thoden van Velzen, E. U. (2020). Effect of recycled content and rPET quality on the properties of PET bottles, part III: Modelling of repetitive recycling. Packaging Technology and Science, 33(9). https://doi.org/10.1002/pts.2489

Bui, T. D., Tseng, J. W., Tseng, M. L., & Lim, M. K. (2022). Opportunities and challenges for solid waste reuse and recycling in emerging economies: A hybrid analysis. Resources, Conservation and Recycling, 177. https://doi.org/10.1016/j.resconrec.2021.105968

Cao, F., Wang, L., Zheng, R., Guo, L., Chen, Y., & Qian, X. (2022). Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products. In RSC Advances (Vol. 12, Issue 49). https://doi.org/10.1039/d2ra06499e

Capellán-Pérez, I., Mediavilla, M., de Castro, C., Carpintero, Ó., & Miguel, L. J. (2014). Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy, 77. https://doi.org/10.1016/j.energy.2014.09.063

Carniel, A., Waldow, V. de A., & Castro, A. M. de. (2021). A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes. In Biotechnology Advances (Vol. 52). https://doi.org/10.1016/j.biotechadv.2021.107811

Cecchini, M., Signori, F., Pingue, P., Bronco, S., Ciardelli, F., & Beltram, F. (2008). High-resolution polyethylene terephthalate (PET) hot embossing at low temperature: Thermal, mechanical, and optical analysis of nanopatterned films. Langmuir, 24(21), 12581–12586. https://doi.org/10.1021/la801706q

Celik, Y., Shamsuyeva, M., & Endres, H. J. (2022). Thermal and Mechanical Properties of the Recycled and Virgin PET—Part I. Polymers, 14(7). https://doi.org/10.3390/polym14071326

Chen, A., Yang, M. Q., Wang, S., & Qian, Q. (2021). Recent Advancements in Photocatalytic Valorization of Plastic Waste to Chemicals and Fuels. In Frontiers in Nanotechnology (Vol. 3). https://doi.org/10.3389/fnano.2021.723120

Choudhury, M., Sahoo, S., Samanta, P., Tiwari, A., Tiwari, A., Chadha, U., Bhardwaj, P., Nalluri, A., Eticha, T. K., & Chakravorty, A. (2022). COVID-19: An Accelerator for Global Plastic Consumption and Its Implications. In Journal of Environmental and Public Health (Vol. 2022). https://doi.org/10.1155/2022/1066350

CHRISPIM, M. C. (2021). Resource recovery from wastewater treatment: challenges, opportunities and guidance for planning and implementation. Frontiers in Neuroscience, 14(1).

Cui, Y., Deng, C., Fan, L., Qiu, Y., & Zhao, L. (2023). Progress in the biosynthesis of bio-based PET and PEF polyester monomers. In Green Chemistry (Vol. 25, Issue 15). https://doi.org/10.1039/d3gc00104k

Davidson, M. G., Furlong, R. A., & McManus, M. C. (2021). Developments in the life cycle assessment of chemical recycling of plastic waste – A review. In Journal of Cleaner Production (Vol. 293, p. 126163). https://doi.org/10.1016/j.jclepro.2021.126163

Day, C., & Day, G. (2017). Climate change, fossil fuel prices and depletion: The rationale for a falling export tax. Economic Modelling, 63. https://doi.org/10.1016/j.econmod.2017.01.006

Dedieu, I., Peyron, S., Gontard, N., & Aouf, C. (2022). The thermo-mechanical recyclability potential of biodegradable biopolyesters: Perspectives and limits for food packaging application. In Polymer Testing (Vol. 111). https://doi.org/10.1016/j.polymertesting.2022.107620

Demirel, B., Yara?, A., & Elçiçek, H. (2011). Crystallization Behavior of PET Materials. BAÜ Fen Bil. Enst. Dergisi Cilt, 13(1), 26–35.

Dhaka, V., Singh, S., Anil, A. G., Sunil Kumar Naik, T. S., Garg, S., Samuel, J., Kumar, M., Ramamurthy, P. C., & Singh, J. (2022). Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. In Environmental Chemistry Letters (Vol. 20, Issue 3, pp. 1777–1800). https://doi.org/10.1007/s10311-021-01384-8

Doan, H. N., Phong Vo, P., Hayashi, K., Kinashi, K., Sakai, W., & Tsutsumi, N. (2020). Recycled PET as a PDMS-Functionalized electrospun fibrous membrane for oil-water separation. Journal of Environmental Chemical Engineering, 8(4). https://doi.org/10.1016/j.jece.2020.103921

Genta, M., Iwaya, T., Sasaki, M., Goto, M., & Hirose, T. (2005). Depolymerization mechanism of poly(ethylene terephthalate) in supercritical methanol. Industrial and Engineering Chemistry Research, 44(11). https://doi.org/10.1021/ie0488187

Gerassimidou, S., Lanska, P., Hahladakis, J. N., Lovat, E., Vanzetto, S., Geueke, B., Groh, K. J., Muncke, J., Maffini, M., Martin, O. V., & Iacovidou, E. (2022). Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. In Journal of Hazardous Materials (Vol. 430). https://doi.org/10.1016/j.jhazmat.2022.128410

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. 3(7), e1700782. https://doi.org/DOI:10.1126/sciadv.1700782

Ghasemlou, M., Barrow, C. J., & Adhikari, B. (2024). The future of bioplastics in food packaging: An industrial perspective. In Food Packaging and Shelf Life (Vol. 43, p. 101279). https://doi.org/10.1016/j.fpsl.2024.101279

Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype. In Materials Advances (Vol. 3, Issue 4, pp. 1974–1992). https://doi.org/10.1039/d1ma01112j

Grumezescu, A. M., Stoica, A. E., Dima-Balcescu, M. ?tefan, Chircov, C., Gharbia, S., Balta, C., Ro?u, M., Herman, H., Holban, A. M., Ficai, A., Vasile, B. S., Andronescu, E., Chifiriuc, M. C., & Hermenean, A. (2019). Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. Journal of Clinical Medicine, 8(7). https://doi.org/10.3390/jcm8071039

Gururani, P., Bhatnagar, P., Dogra, P., Chandra Joshi, H., Chauhan, P. K., Vlaskin, M. S., Chandra Joshi, N., Kurbatova, A., Irina, A., & Kumar, V. (2023). Bio-based food packaging materials: A sustainable and Holistic approach for cleaner environment- a review. Current Research in Green and Sustainable Chemistry, 7. https://doi.org/10.1016/j.crgsc.2023.100384

Hajam, Y. A., Kumar, R., & Kumar, A. (2023). Environmental waste management strategies and vermi transformation for sustainable development. In Environmental Challenges (Vol. 13). https://doi.org/10.1016/j.envc.2023.100747

Han, B., Jin, X., Sun, R., Li, H., Liang, X., & Zhou, Y. (2023). Understanding land-use sustainability with a systematical framework: An evaluation case of China. Land Use Policy, 132. https://doi.org/10.1016/j.landusepol.2023.106767

Hansen, T., & Pollin, R. (2020). Economics and climate justice activism: assessing the financial impact of the fossil fuel divestment movement. Review of Social Economy. https://doi.org/10.1080/00346764.2020.1785539

He, J., Li, Z., Zhang, X., Wang, H., Dong, W., Du, E., Chang, S., Ou, X., Guo, S., Tian, Z., Gu, A., Teng, F., Hu, B., Yang, X., Chen, S., Yao, M., Yuan, Z., Zhou, L., Zhao, X., … Zhang, D. (2022). Towards carbon neutrality: A study on China’s long-term low-carbon transition pathways and strategies. Environmental Science and Ecotechnology, 9. https://doi.org/10.1016/j.ese.2021.100134

He, Y., Deng, X., Jiang, L., Hao, L., Shi, Y., Lyu, M., Zhang, L., & Wang, S. (2024). Current advances, challenges and strategies for enhancing the biodegradation of plastic waste. In Science of the Total Environment (Vol. 906). https://doi.org/10.1016/j.scitotenv.2023.167850

Hiraga, K., Taniguchi, I., Yoshida, S., Kimura, Y., & Oda, K. (2019). Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution. EMBO Reports. https://doi.org/10.15252/embr.201949365

Huayu Fang, E. Z. D. W. G. Y. J. C. T. L. J. W. J. C. S. L. (2021). method for recycling continuous alcoholysis of waste polyester material. https://doi.org/10.07.2019

Ingrao, C., Lo Giudice, A., Tricase, C., Rana, R., Mbohwa, C., & Siracusa, V. (2014). Recycled-PET fibre based panels for building thermal insulation: Environmental impact and improvement potential assessment for a greener production. Science of the Total Environment, 493. https://doi.org/10.1016/j.scitotenv.2014.06.022

Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., & Azapagic, A. (2021). Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Science of the Total Environment, 769. https://doi.org/10.1016/j.scitotenv.2020.144483

Jiao, H., Ali, S. S., Alsharbaty, M. H. M., Elsamahy, T., Abdelkarim, E., Schagerl, M., Al-Tohamy, R., & Sun, J. (2024). A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. In Ecotoxicology and Environmental Safety (Vol. 271). https://doi.org/10.1016/j.ecoenv.2024.115942

Jones, H., Saffar, F., Koutsos, V., & Ray, D. (2021). Polyolefins and polyethylene terephthalate package wastes: Recycling and use in composites. In Energies (Vol. 14, Issue 21). https://doi.org/10.3390/en14217306

Kang, M. J., Yu, H. J., Jegal, J., Kim, H. S., & Cha, H. G. (2020). Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chemical Engineering Journal, 398. https://doi.org/10.1016/j.cej.2020.125655

Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. In Agronomy for Sustainable Development (Vol. 32, Issue 2). https://doi.org/10.1007/s13593-011-0068-3

Kassab, A., Al Nabhani, D., Mohanty, P., Pannier, C., & Ayoub, G. Y. (2023). Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. In Polymers (Vol. 15, Issue 19). https://doi.org/10.3390/polym15193881

Korley, L. S. T. J., Epps, T. H., Helms, B. A., & Ryan, A. J. (2021). Toward polymer upcycling-adding value and tackling circularity. In Science (Vol. 373, Issue 6550). https://doi.org/10.1126/science.abg4503

Kullmann, F., Markewitz, P., Kotzur, L., & Stolten, D. (2022). THE ROLE OF HYDROGEN FOR THE DEFOSSILISATION OF THE GERMAN CHEMICAL INDUSTRY. Proceedings of WHEC 2022 - 23rd World Hydrogen Energy Conference: Bridging Continents by H2.

Laldinpuii, Z., Lalhmangaihzuala, S., Pachuau, Z., & Vanlaldinpuia, K. (2021). Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst. Waste Management, 126. https://doi.org/10.1016/j.wasman.2021.02.056

Laub, J. A. (1999). Assessing the servant organization; Development of the Organizational Leadership Assessment (OLA) model. Dissertation Abstracts International. Procedia - Social and Behavioral Sciences, 1(2).

Lee, J. T., Kang, M., & Bae, J. Y. (2024). The Facile Synthesis and Application of Mesoporous Silica Nanoparticles with a Vinyl Functional Group for Plastic Recycling. International Journal of Molecular Sciences, 25(4), 2295. https://doi.org/10.3390/ijms25042295

Levy, M. (2017). Life Cycle Analysis-Strengths and Limitations of LCA. Encyclopedia of Sustainable Technologies, 233–236. https://doi.org/10.1016/B978-0-12-409548-9.10062-4

Li, J., Shao, J., Yao, X., & Li, J. (2023). Life cycle analysis of the economic costs and environmental benefits of photovoltaic module waste recycling in China. Resources, Conservation and Recycling, 196. https://doi.org/10.1016/j.resconrec.2023.107027

Mastrolia, C., Giaquinto, D., Gatz, C., Pervez, M. N., Hasan, S. W., Zarra, T., Li, C. W., Belgiorno, V., & Naddeo, V. (2022). Plastic Pollution: Are Bioplastics the Right Solution? In Water (Vol. 14, Issue 22). https://doi.org/10.3390/w14223596

McDonnell, C., & Gupta, J. (2024). Beyond divest vs. engage: a review of the role of institutional investors in an inclusive fossil fuel phase-out. In Climate Policy (Vol. 24, Issue 3). https://doi.org/10.1080/14693062.2023.2261900

Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? In Current Research in Green and Sustainable Chemistry (Vol. 5). https://doi.org/10.1016/j.crgsc.2022.100273

Muringayil Joseph, T., Azat, S., Ahmadi, Z., Moini Jazani, O., Esmaeili, A., Kianfar, E., Haponiuk, J., & Thomas, S. (2024). Polyethylene terephthalate (PET) recycling: A review. Case Studies in Chemical and Environmental Engineering, 9(9), 100673. https://doi.org/10.1016/J.CSCEE.2024.100673

Muszynski, M., Nowicki, J., Zygadlo, M., & Dudek, G. (2023). Comparsion of Catalyst Effectiveness in Different Chemical Depolymerization Methods of Poly (ethylene terephthalate). In Molecules (Vol. 28, Issue 17). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/molecules28176385

Olam, M. (2023). Mechanical and Thermal Properties of HDPE/PET Microplastics, Applications, and Impact on Environment and Life. https://doi.org/10.5772/intechopen.110390

Pahnila, M., Koskela, A., Sulasalmi, P., & Fabritius, T. (2023). A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. In Energies (Vol. 16, Issue 19). https://doi.org/10.3390/en16196936

Peng, Y., Yang, J., Deng, C., Deng, J., Shen, L., & Fu, Y. (2023). Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38998-1

Perera, A. T. K., Song, K., Umezu, S., & Sato, H. (2023). Recent progress in functionalized plastic 3D printing in creation of metallized architectures. In Materials and Design (Vol. 232). https://doi.org/10.1016/j.matdes.2023.112044

Pierrat, É., Laurent, A., Dorber, M., Rygaard, M., Verones, F., & Hauschild, M. (2023). Advancing water footprint assessments: Combining the impacts of water pollution and scarcity. Science of the Total Environment, 870. https://doi.org/10.1016/j.scitotenv.2023.161910

Plantinga, A., & Scholtens, B. (2021). The financial impact of fossil fuel divestment. Climate Policy, 21(1). https://doi.org/10.1080/14693062.2020.1806020

Pollock, D. J., & Kratz, R. F. (1980). Polymer molecular weights. Methods in Experimental Physics, 16. https://doi.org/10.1016/S0076-695X(08)60514-1

Qin, Z. H., Mou, J. H., Chao, C. Y. H., Chopra, S. S., Daoud, W., Leu, S. Y., Ning, Z., Tso, C. Y., Chan, C. K., Tang, S., Hathi, Z. J., Haque, M. A., Wang, X., & Lin, C. S. K. (2021). Biotechnology of Plastic Waste Degradation, Recycling, and Valorization: Current Advances and Future Perspectives. In ChemSusChem (Vol. 14, Issue 19). https://doi.org/10.1002/cssc.202100752

Qu, C., Ito, K., Katsuyama, I., Mitani, T., Kashimura, K., & Watanabe, T. (2020). Directly Microwave-Accelerated Cleavage of C−C and C−O Bonds of Lignin by Copper Oxide and H2O2. ChemSusChem, 13(17), 4510–4518. https://doi.org/10.1002/cssc.202000502

Radadiya, R., Shahabuddin, S., & Gaur, R. (2022). Waste to Best: Chemical Recycling of Polyethylene Terephthalate (PET) for Generation of Useful Molecules. In Springer Proceedings in Materials (Vol. 15, pp. 245–258). https://doi.org/10.1007/978-981-19-2572-6_19

Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58. https://doi.org/10.1016/J.WASMAN.2017.07.044

Recycling of Polyethylene Terephthalate Bottles. (2019). In Recycling of Polyethylene Terephthalate Bottles. https://doi.org/10.1016/c2016-0-01084-7

Salvador, M., Abdulmutalib, U., Gonzalez, J., Kim, J., Smith, A. A., Faulon, J. L., Wei, R., Zimmermann, W., & Jimenez, J. I. (2019). Microbial genes for a circular and sustainable bio-PET economy. In Genes (Vol. 10, Issue 5). https://doi.org/10.3390/genes10050373

Sanghavi, R., Intan, N. N., Xie, S., Lin, H., & Pfaendtner, J. (2024). Reaction Pathway Analysis of PET Deconstruction via Methanolysis and Tertiary Amine Catalysts. The Journal of Physical Chemistry A, 128(29), 5883–5891. https://doi.org/10.1021/acs.jpca.4c02276

Santos, S. M., Assis, A. C., Gomes, L., Nobre, C., & Brito, P. (2022). Waste Gasification Technologies: A Brief Overview. Waste, 1(1). https://doi.org/10.3390/waste1010011

Sarda, P., Hanan, J. C., Lawrence, J. G., & Allahkarami, M. (2022). Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. In Journal of Polymer Science (Vol. 60, Issue 1, pp. 7–31). https://doi.org/10.1002/pol.20210495

Sarfraz, J., Gulin-Sarfraz, T., Nilsen-Nygaard, J., & Pettersen, M. K. (2021). Nanocomposites for food packaging applications: An overview. In Nanomaterials (Vol. 11, Issue 1). https://doi.org/10.3390/nano11010010

Saricam, C., & Okur, N. (2018). Polyester Usage for Automotive Applications. In Polyester - Production, Characterization and Innovative Applications. https://doi.org/10.5772/intechopen.74206

Sarioglu, E. (2019). An investigation on performance optimization of r-PET/cotton and v-PET/cotton knitted fabric. International Journal of Clothing Science and Technology, 31(3), 439–452. https://doi.org/10.1108/IJCST-08-2018-0108

Scherer, C., Emberger-Klein, A., & Menrad, K. (2017). Biogenic product alternatives for children: Consumer preferences for a set of sand toys made of bio-based plastic. Sustainable Production and Consumption, 10. https://doi.org/10.1016/j.spc.2016.11.001

Schyns, Z. O. G., & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. In Macromolecular Rapid Communications (Vol. 42, Issue 3). https://doi.org/10.1002/marc.202000415

Seidl, L. G., Lee, R. P., Keller, F., & Meyer, B. (2019). Chemical utilization of carbonaceous waste and lignite - A case study of sustainable olefin production in Germany. DGMK Tagungsbericht, 2019(3).

Sevilla, M. E., Garcia, M. D., Perez-Castillo, Y., Armijos-Jaramillo, V., Casado, S., Vizuete, K., Debut, A., & Cerda-Mejía, L. (2023). Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase. Polymers, 15(7). https://doi.org/10.3390/polym15071779

Shi, L., & Zhu, L. (2024). Recent Advances and Challenges in Enzymatic Depolymerization and Recycling of PET Wastes. ChemBioChem, 25(2), e202300578. https://doi.org/10.1002/cbic.202300578

Shukla, S. R., & Harad, A. M. (2006). Aminolysis of polyethylene terephthalate waste. Polymer Degradation and Stability, 91(8). https://doi.org/10.1016/j.polymdegradstab.2005.11.005

Siddiqui, M. N., Redhwi, H. H., & Achilias, D. S. (2012). Recycling of poly(ethylene terephthalate) waste through methanolic pyrolysis in a microwave reactor. Journal of Analytical and Applied Pyrolysis, 98. https://doi.org/10.1016/j.jaap.2012.09.007

Sinha, V., Patel, M. R., & Patel, J. V. (2010). Pet waste management by chemical recycling: A review. In Journal of Polymers and the Environment (Vol. 18, Issue 1). https://doi.org/10.1007/s10924-008-0106-7

Slusarczyk, C., Sieradzka, M., Fabia, J., & Fryczkowski, R. (2020). Supermolecular structure of poly(butylene terephthalate) fibers formed with the addition of reduced graphene oxide. Polymers, 12(7), 1456. https://doi.org/10.3390/polym12071456

Statista Research Department. (2024). Global market volume of PET 2015-2030. https://www.statista.com/statistics/1245264/polyethylene-terephthalate-market-volume-worldwide

Stegmann, P., Gerritse, T., Shen, L., Londo, M., Puente, Á., & Junginger, M. (2023). The global warming potential and the material utility of PET and bio-based PEF bottles over multiple recycling trips. Journal of Cleaner Production, 395. https://doi.org/10.1016/j.jclepro.2023.136426

Sulyman, M., Haponiuk, J., & Formela, K. (2016). Utilization of Recycled Polyethylene Terephthalate (PET) in Engineering Materials: A Review. International Journal of Environmental Science and Development, 7(2), 100–108. https://doi.org/10.7763/IJESD.2016.V7.749

Telli, A., & Özdil, N. (2015). Effect of recycled PET fibers on the performance properties of knitted fabrics. Journal of Engineered Fibers and Fabrics, 10(2). https://doi.org/10.1177/155892501501000206

Tiwari, R., Azad, N., Dutta, D., Yadav, B. R., & Kumar, S. (2023). A critical review and future perspective of plastic waste recycling. In Science of the Total Environment (Vol. 881, p. 163433). https://doi.org/10.1016/j.scitotenv.2023.163433

Trafczynski, M., Urbaniec, K., Alabrudzinski, S., Mikulcic, H., & Duic, N. (2024). The optimization and engineering at the service of the sustainable development of energy, water and environment systems. In Optimization and Engineering (Vol. 25, Issue 1). https://doi.org/10.1007/s11081-023-09872-2

Trucillo, P. (2024). Biomaterials for Drug Delivery and Human Applications. In Materials (Vol. 17, Issue 2). https://doi.org/10.3390/ma17020456

Trzepiecinski, T., Batu, T., Kibrete, F., & Lemu, H. G. (2023). Application of Composite Materials for Energy Generation Devices. In Journal of Composites Science (Vol. 7, Issue 2). https://doi.org/10.3390/jcs7020055

Tumu, K., Vorst, K., & Curtzwiler, G. (2023). Global plastic waste recycling and extended producer responsibility laws. In Journal of Environmental Management (Vol. 348). https://doi.org/10.1016/j.jenvman.2023.119242

Uekert, T., Kasap, H., & Reisner, E. (2019). Photoreforming of Nonrecyclable Plastic Waste over a Carbon Nitride/Nickel Phosphide Catalyst. Journal of the American Chemical Society, 141(38), 15201–15210. https://doi.org/10.1021/jacs.9b06872

Uekert, T., Singh, A., DesVeaux, J. S., Ghosh, T., Bhatt, A., Yadav, G., Afzal, S., Walzberg, J., Knauer, K. M., Nicholson, S. R., Beckham, G. T., & Carpenter, A. C. (2023). Technical, Economic, and Environmental Comparison of Closed-Loop Recycling Technologies for Common Plastics. ACS Sustainable Chemistry and Engineering, 11(3). https://doi.org/10.1021/acssuschemeng.2c05497

Usman, I. U., & Kunlin, M. (2024). Influence of Polyethylene Terephthalate (PET) utilization on the engineering properties of asphalt mixtures: A review. In Construction and Building Materials (Vol. 411). https://doi.org/10.1016/j.conbuildmat.2023.134439

Vamvuka, D. (2011). Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-An overview. In International Journal of Energy Research (Vol. 35, Issue 10). https://doi.org/10.1002/er.1804

Versino, F., Ortega, F., Monroy, Y., Rivero, S., López, O. V., & García, M. A. (2023). Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. In Foods (Vol. 12, Issue 5). https://doi.org/10.3390/foods12051057

Vlasopoulos, A., Malinauskaite, J., Zabnienska-Góra, A., & Jouhara, H. (2023). Life cycle assessment of plastic waste and energy recovery. Energy, 277. https://doi.org/10.1016/j.energy.2023.127576

Wang, H., Liu, Y., Li, Z., Zhang, X., Zhang, S., & Zhang, Y. (2009). Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. European Polymer Journal, 45(5). https://doi.org/10.1016/j.eurpolymj.2009.01.025

Worku, B. G., & Wubieneh, T. A. (2021). Mechanical Properties of Composite Materials from Waste Poly(ethylene terephthalate) Reinforced with Glass Fibers and Waste Window Glass. International Journal of Polymer Science, 2021. https://doi.org/10.1155/2021/3320226

Xayachak, T., Haque, N., Parthasarathy, R., King, S., Emami, N., Lau, D., & Pramanik, B. K. (2022). Pyrolysis for plastic waste management: An engineering perspective. Journal of Environmental Chemical Engineering, 10(6). https://doi.org/10.1016/j.jece.2022.108865

Yang, W., Liu, R., Li, C., Song, Y., & Hu, C. (2021). Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Waste Management, 135. https://doi.org/10.1016/j.wasman.2021.09.009

Zhang, L. N., Liu, L. Z., Yue, Q. F., & Zhu, C. C. (2014). From aminolysis product of PET waste to value-added products of polymer and assistants. Polymers and Polymer Composites, 22(1). https://doi.org/10.1177/096739111402200102

Zhang, W., & Xu, J. (2022). Advanced lightweight materials for Automobiles: A review. In Materials and Design (Vol. 221). https://doi.org/10.1016/j.matdes.2022.110994

Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Anderson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., & Zhu, H. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. In Matter (Vol. 6, Issue 1). https://doi.org/10.1016/j.matt.2022.11.006

Zhou, H., Ren, Y., Li, Z., Xu, M., Wang, Y., Ge, R., Kong, X., Zheng, L., & Duan, H. (2021). Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-25048-x

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



3
Save
0
Citation
45
View
0
Share