References
Ajayi, F., Ademola, O. M., Amuda, K. F., & Alade, B. (2024). AI-driven decarbonization of buildings?: Leveraging predictive analytics and automation for sustainable energy management AI-driven decarbonization of buildings?: Leveraging predictive analytics and automation for sustainable energy management. October. https://doi.org/10.30574/wjarr.2024.24.1.2997
Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
Bhatia, M., Meenakshi, N., Kaur, P., & Dhir, A. (2024). Digital technologies and carbon neutrality goals: An in-depth investigation of drivers, barriers, and risk mitigation strategies. Journal of Cleaner Production, 451(July 2023), 141946. https://doi.org/10.1016/j.jclepro.2024.141946
Chen, L., Msigwa, G., Yang, M., Osman, A. I., Fawzy, S., Rooney, D. W., & Yap, P. S. (2022). Strategies to achieve a carbon neutral society: a review. In Environmental Chemistry Letters (Vol. 20, Issue 4). Springer International Publishing. https://doi.org/10.1007/s10311-022-01435-8
Child, J. (1972). Organizational Structure, Environment and Performance: The Role of Strategic Choice. Sociology, 6(1), 1–22. https://doi.org/10.1177/003803857200600101
Chong, A., Cheah, H., Wong, W. P., & Deng, Q. (2012). Challenges of Lean Manufacturing Implementation?: A Hierarchical Model. Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, 1997, 2091–2099.
Cui, Y., & Yao, F. (2024). Integrating Deep Learning and Reinforcement Learning for Enhanced Financial Risk Forecasting in Supply Chain Management. Journal of the Knowledge Economy, 0123456789. https://doi.org/10.1007/s13132-024-01946-5
Dimaggio, P. J., & Powell, W. W. (1983). the Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. American Sociological Review, 48(2), 147–160. http://www.jstor.org/stable/2095101
Dubey, R., Gunasekaran, A., Thanos, P., Childe, S. J., Shibin, K. T., FOSSO, S., & WAMBA. (2016). Sustainable supply chain management: framework and further research directions. Journal of Cleaner Production, 142(2), 1119–1130. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.03.117
Fosso Wamba, S., Gunasekaran, A., Papadopoulos, T., & Ngai, E. (2018). Big data analytics in logistics and supply chain management. International Journal of Logistics Management, 29(2), 478–484. https://doi.org/10.1108/IJLM-02-2018-0026
Gaikwad, T. S., Jadhav, S. A., Vaidya, R. R., & Kulkarni, S. H. (2020). Machine learning amalgamation of Mathematics, Statistics and Electronics. International Research Journal on Advanced Science Hub, 2(7), 100–108. https://doi.org/10.47392/irjash.2020.72
Goodell, J. W., Kumar, S., Lim, W. M., & Pattnaik, D. (2021). Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32, 100577. https://doi.org/10.1016/j.jbef.2021.100577
Islam, M. A., Hunt, A., Jantan, A. H., Hashim, H., & Chong, C. W. (2020). Exploring challenges and solutions in applying green human resource management practices for the sustainable workplace in the ready-made garment industry in Bangladesh. Business Strategy and Development, 3(3), 332–343. https://doi.org/10.1002/bsd2.99
Ivanov, D. (2020). Ivanov, Dmitry (2020). Predicting the impacts of epidemic outbreaks on global supply chains- A simulation-based analysis on the coronavirus outbreak (COVID-19 SARS-CoV-2).pdf. Transportation Research. https://doi.org/https://doi.org/10.1016/j.tre.2020.101922
Ivanov, D., Dolgui, A., Blackhurst, J. V., & Choi, T.-M. (2023). Toward supply chain viability theory: from lessons learned through COVID-19 pandemic to viable ecosystems. International Journal of Production Research, 61(8), 2402–2415. https://doi.org/10.1080/00207543.2023.2177049
Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219(July 2018), 179–194. https://doi.org/10.1016/j.ijpe.2019.05.022
Kamble, S. S., Gunasekaran, A., Kumar, V., Belhadi, A., & Foropon, C. (2021). A machine learning based approach for predicting blockchain adoption in supply Chain. Technological Forecasting and Social Change, 163(September 2020), 120465. https://doi.org/10.1016/j.techfore.2020.120465
Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04410-8
Lee, W. J., Wu, H., Yun, H., Kim, H., Jun, M. B. G., & Sutherland, J. W. (2019). Predictive maintenance of machine tool systems using artificial intelligence techniques applied to machine condition data. Procedia CIRP, 80(March), 506–511. https://doi.org/10.1016/j.procir.2018.12.019
Lumumba, V. W., Kiprotich, D., Makena, N. G., Kavita, M. D., & Mpaine, M. L. (2024). Comparative Analysis of Cross-Validation Techniques?: LOOCV , K-folds Cross-Validation , and Repeated K-folds Cross-Validation in Machine Learning Models. October. https://doi.org/10.11648/j.ajtas.20241305.13
MD Rokibul Hasan, Md Zahidul Islam, Md Fakhrul Islam Sumon, Md Osiujjaman, Pravakar Debnath, & Laxmi Pant. (2024). Integrating Artificial Intelligence and Predictive Analytics in Supply Chain Management to Minimize Carbon Footprint and Enhance Business Growth in the USA. Journal of Business and Management Studies, 6(4), 195–212. https://doi.org/10.32996/jbms.2024.6.4.17
Nsisong Louis Eyo-Udo, Agnes Clare Odimarha, & Olaniyi Olufemi Kolade. (2024). Ethical Supply Chain Management: Balancing Profit, Social Responsibility, and Environmental Stewardship. International Journal of Management & Entrepreneurship Research, 6(4), 1069–1077. https://doi.org/10.51594/ijmer.v6i4.985
Ökmen, Ö., & Öztas, A. (2015). Scenario based evaluation of a cost risk model through sensitivity analysis. Engineering, Construction and Architectural Management, 22(4), 403–423. https://doi.org/10.1108/ECAM-09-2014-0121
Oluwafunmi Adijat Elufioye, Chinedu Ugochukwu Ike, Olubusola Odeyemi, Favour Oluwadamilare Usman, & Noluthando Zamanjomane Mhlongo. (2024). Ai-Driven Predictive Analytics in Agricultural Supply Chains: a Review: Assessing the Benefits and Challenges of Ai in Forecasting Demand and Optimizing Supply in Agriculture. Computer Science & IT Research Journal, 5(2), 473–497. https://doi.org/10.51594/csitrj.v5i2.817
Rane, N. L., Choudhary, S. P., & Rane, J. (2024). Artificial Intelligence-driven corporate finance: enhancing efficiency and decision-making through machine learning, natural language processing, and robotic process automation in corporate governance and sustainability. Studies in Economics and Business Relations, 5(2), 1–22. https://doi.org/10.48185/sebr.v5i2.1050
Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., & Ivanov, D. (2023). A review on reinforcement learning algorithms and applications in supply chain management. International Journal of Production Research, 61(20), 7151–7179. https://doi.org/10.1080/00207543.2022.2140221
Russell, S. J., Norvig, P., Davis, E., Edwards, D. D., Hay, N. J., Malik, J. M., & Thrun, S. (2016). Artificial Intelligence: A Modern Approach (Third). Pearson.
Samadhiya, A., Naz, F., Kumar, A., Garza-Reyes, J. A., & Luthra, S. (2024). How does big data influence smart manufacturing in the presence of preventive maintenance? A multi-analytical investigation. Journal of Manufacturing Technology Management, 1–26. https://doi.org/10.1108/JMTM-08-2024-0454
Shao, G., Brodsky, A., Shin, S. J., & Kim, D. B. (2017). Decision guidance methodology for sustainable manufacturing using process analytics formalism. Journal of Intelligent Manufacturing, 28(2), 455–472. https://doi.org/10.1007/s10845-014-0995-3
Sharma, H. B., Vanapalli, K. R., Cheela, V. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., Goel, S., & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. https://doi.org/10.1016/j.resconrec.2020.105052
Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. KStrategic Management Journal, 18(7), 509–533. https://doi.org/https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122(May 2020), 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Uddin, M. S., Eltahir, O., Mohamed, B., & Ebert, J. (2024). Effect of Sustainable Supply Chain and Management Practices on Supply Chain Performance?: The Mediating Roles of Ethical Dilemmas and Leadership Quality. 4, 13–32.
Uddin, M. S., Eltahir, O., Mohamed, B., Khan, Z. H., & Ebert, J. (2025). Mastering Statistics: A Journey from Data Science to Doctoral Excellence. International Journal of Innovation Scientific Research and Review, 07(January), 7613–7621. http://www.journalijisr.com
Uddin, M. S., Habib, M. M., & Mohamed, O. E. B. (2023a). Exploring the Interconnectedness of Supply Chain Management Theories: A Literature Review. International Supply Chain Technology Journal, 9(4). https://doi.org/10.20545/isctj.v09.i04.03
Uddin, M. S., Habib, M., & Mohamed, O. E. B. (2023b). The Role of Supply Chain Finance on Supply Chain Management and Firm ’ s Performance?: A Conceptual Framework. https://doi.org/https://doi.org/10.20545/isctj.v09.i06.01
Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
Wong, L. W., Tan, G. W. H., Ooi, K. B., Lin, B., & Dwivedi, Y. K. (2024). Artificial intelligence-driven risk management for enhancing supply chain agility: A deep-learning-based dual-stage PLS-SEM-ANN analysis. International Journal of Production Research, 62(15), 5535–5555. https://doi.org/10.1080/00207543.2022.2063089
Zhang, A., Tay, H. L., Alvi, M. F., Wang, J. X., & Gong, Y. (2022). Carbon neutrality drivers and implications for firm performance and supply chain management. Business Strategy and the Environment, 32(4), 1966–1980. https://doi.org/10.1002/bse.3230
Zhang, Y., & Cao, W. (2022). Forecasting Algorithm of Regional Economic Development Based on LPSVR. 935 LNEE, 1135–1140. https://doi.org/10.1155/2022/3381015