Modernizing Textile Industry Operations with Artificial Intelligence
Md Mofasel Hossain 1, Arpon Roy 2*, Md.Nahiduzzaman 3*
Applied IT & Engineering 3(1) 1-8 https://doi.org/10.25163/engineering.3110230
Submitted: 05 December 2024 Revised: 10 February 2025 Published: 14 February 2025
Abstract
Background: Integrating AI technology with fundamental laws of physics has rendered the monotony of routine jobs in textile production a thing of the past. AI has been employed in studying structural and chemical properties of textile materials to ensure production efficiency and effective quality control. Methods: Literature review and several case studies on AI technology use were done focusing on three primary areas of textile production: production, fabric construction, and coloration processes. Application of AI in the industry was assessed through the use of artificial neural networks (ANN) and convolutional neural networks (CNN). Results: The study indicates significant demonstration of efficiency, speed, and reliability of AI in classifying materials, identifying defects, recognizing patterns and color detection. Intelligent systems with advanced analytics and sensors allow for more precise predictive maintenance and decision-making by providing real-time analytics and automated selection capabilities. This research on the use of artificial intelligence in textile manufacturing focuses on its application for automation, monitoring, quality control, and operational efficiency. Conclusion: This study highlights the growth potential in the AI frontier technology domain, establishing AI’s role in evolving the textile industry into a smarter, more efficient, self-operating, and sustainable industry. In fostering new solutions, it draws attention to the groundwork data and system integration shortcomings as inadequacies.
Keywords: Artificial Intelligence; Machine Learning; Textile Industry; Automation; Quality Control.
References
Akram, U. (2024, September 10). Exploring market entry strategies for pakistani exports in Germany. https://opus4.kobv.de/opus4-haw/frontdoor/index/index/docId/5144
Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis, G. K., & Taha, K. (2015). Efficient Machine Learning for Big Data: a review. Big Data Research, 2(3), 87–93. https://doi.org/10.1016/j.bdr.2015.04.001
Alsamarah, W., Younes, B., & Yousef, M. (2021). Reducing waste in garment factories by intelligent planning of optimal cutting orders. Journal of the Textile Institute, 113(9), 1917–1925. https://doi.org/10.1080/00405000.2021.1956711
Babu, M. M., Akter, S., Rahman, M., Billah, M. M., & Hack-Polay, D. (2022e). The role of artificial intelligence in shaping the future of Agile fashion industry. Production Planning & Control, 35(15), 2084–2098. https://doi.org/10.1080/09537287.2022.2060858
Balasubramani, S., Aklin, H. R., Sabarishwaran, G. H., Sandeep, R., Sreeram, R., & Sureshbabu, Y. (2025, February). Design and fabrication of machine vision system for knitting machine. In AIP Conference Proceedings (Vol. 3204, No. 1). AIP Publishing.
Berrar, D. (2016). Confidence curves: an alternative to null hypothesis significance testing for the comparison of classifiers. Machine Learning, 106(6), 911–949. https://doi.org/10.1007/s10994-016-5612-6
Bidollahkhani, M., & Kunkel, J. M. (2024, April 20). Revolutionizing System reliability: The role of AI in predictive maintenance Strategies. arXiv.org. https://arxiv.org/abs/2404.13454
Biswas, P., Rashid, A., Biswas, A., Nasim, M. a. A., Chakraborty, S., Gupta, K. D., & George, R. (2024). AI-driven approaches for optimizing power consumption: a comprehensive survey. Discover Artificial Intelligence, 4(1). https://doi.org/10.1007/s44163-024-00211-7
Bonada, F., Echeverria, L., Domingo, X., & Anzaldi, G. (2020). AI for improving the overall equipment efficiency in manufacturing industry. In New Trends in the Use of Artificial Intelligence for the Industry 4.0. IntechOpen.
Bosse, G., Breuer, J., & Spies, C. (2006). The resistance to changing guidelines – what are the challenges and how to meet them. Best Practice & Research Clinical Anaesthesiology, 20(3), 379–395. https://doi.org/10.1016/j.bpa.2006.02.005
Bravo, M. V. C., & Iturralde, W. M. P. (2024). Artificial intelligence in the Management of Textile Companies: A Contextual analysis. Open Journal of Business and Management, 12(02), 945–960. https://doi.org/10.4236/ojbm.2024.122050
Busari, M. (2025). AI and Machine Learning Algorithms for Predictive Supply Chain Management in Textile Manufacturing.
De Mattos, F. B., Eisenbraun, J., Kucera, D., & Rossi, A. (2021). Disruption in the apparel industry? Automation, employment and reshoring. International Labour Review, 160(4), 519–536. https://doi.org/10.1111/ilr.12213
Deep learning and computer vision techniques for enhanced quality control in manufacturing processes. (2024). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10663422
George, A. S. (2024). Artificial Intelligence and the Future of Work: Job Shifting Not Job Loss. puirp.com. https://doi.org/10.5281/zenodo.10936490
Hussain, H. I., Haseeb, M., Kot, S., & Jermsittiparsert, K. (2020). Non-linear impact of textile and clothing manufacturing on economic growth: The case of top-Asian economies. Fibres & Textiles in Eastern Europe, (5 (143), 27-36.
Ingle, N., & Jasper, W. J. (2024). A review of deep learning and artificial intelligence in dyeing, printing and finishing. Textile Research Journal. https://doi.org/10.1177/00405175241268619
Ingle, N., & Jasper, W. J. (2025). A review of the evolution and concepts of deep learning and AI in the textile industry. Textile Research Journal. https://doi.org/10.1177/00405175241310632
Jain, A., Kakade, K. S., & Vispute, S. A. (2025). The Role of Artificial Intelligence (AI) in the Transformation of Small-and Medium-Sized Businesses: Challenges and Opportunities. Artificial Intelligence-Enabled Businesses: How to Develop Strategies for Innovation, 209-226.
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management, 07(01), 83–111. https://doi.org/10.1142/s2424862221300040
Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Gonzalez, E. S. (2022). Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustainable Operations and Computers, 3, 203–217. https://doi.org/10.1016/j.susoc.2022.01.008
Kamalha, E., Kiberu, J., Nibikora, I., Mwasiagi, J. I., & Omollo, E. (2017). Clustering and classification of cotton lint using principle component analysis, agglomerative hierarchical clustering, and K-Means clustering. Journal of Natural Fibers, 15(3), 425–435. https://doi.org/10.1080/15440478.2017.1340220
Khan, M. A., Khan, H., Omer, M. F., Ullah, I., & Yasir, M. (2024). Impact of artificial intelligence on the global economy and technology advancements. In Advanced technologies and societal change (pp. 147–180). https://doi.org/10.1007/978-981-97-3222-7_7
Lee, J. (1995). Machine performance monitoring and proactive maintenance in computer-integrated manufacturing: review and perspective. International Journal of Computer Integrated Manufacturing, 8(5), 370–380. https://doi.org/10.1080/09511929508944664
Lee, W., Sajadieh, S. M. M., Choi, H. K., Park, J., & Noh, S. D. (2024). Application of reinforcement learning to dyeing processes for residual dye reduction. International Journal of Precision Engineering and Manufacturing-Green Technology, 11(3), 743–763. https://doi.org/10.1007/s40684-024-00627-7
Md Habibur Rahman, Tanjila Islam, Mohammad Hamid Hasan Amjad, Md Shihab Sadik Shovon, Md. Estehad Chowdhury, Md Rahatul Ashakin, Bayazid Hossain, Proshanta Kumar Bhowmik, Md Nurullah, Atiqur Rahman Sunny (2024). "Impact of Internet of Things (IoT) on Healthcare in Transforming Patient Care and Overcoming Operational Challenges", Journal of Angiotherapy, 8(11),1-8,10041. https://doi.org/10.25163/angiotherapy.81110041
Miller, T., Durlik, I., Kostecka, E., Kozlovska, P., Staude, M., & Sokolowska, S. (2025). The role of lightweight AI models in Supporting a Sustainable Transition to renewable Energy: A Systematic review. Energies, 18(5), 1192. https://doi.org/10.3390/en18051192
Mohan, T. R., Roselyn, J. P., Uthra, R. A., Devaraj, D., & Umachandran, K. (2021). Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Computers & Industrial Engineering, 157, 107267. https://doi.org/10.1016/j.cie.2021.107267
Ngan, H. Y., Pang, G. K., & Yung, N. H. (2011). Automated fabric defect detection—A review. Image and Vision Computing, 29(7), 442–458. https://doi.org/10.1016/j.imavis.2011.02.002
Orisadare, E. A., Achukwu, O. E., Ogunyemi, A. A., Adedeji, D. O., Diyaolu, I. J., Ugwu, E. I., Oluwatope, A. O., Bakare, K. O., & Awoyelu, I. O. (2025). Digitalisation and Green Strategies: A Systematic review of the textile, apparel and fashion industries. Circular Economy and Sustainability. https://doi.org/10.1007/s43615-025-00555-x
Ozek, A., Seckin, M., Demircioglu, P., & Bogrekci, I. (2025). Artificial Intelligence Driving Innovation in Textile Defect Detection. Textiles, 5(2), 12.
Patil, D. (2024). Artificial Intelligence-Driven Predictive Maintenance In Manufacturing: Enhancing Operational Efficiency, Minimizing Downtime, And Optimizing Resource Utilization. Minimizing Downtime, And Optimizing Resource Utilization (December 11, 2024).
Pech, M., Vrchota, J., & Bednár, J. (2021). Predictive maintenance and Intelligent Sensors in Smart Factory: review. Sensors, 21(4), 1470. https://doi.org/10.3390/s21041470
Phenyane, S. S. (2023). Designing an AI-based predictive maintenance framework to improve OEE for an automotive manufacturer in South Africa. https://wiredspace.wits.ac.za/items/841501f1-e807-46e3-8488-eacdb6aaad93
Priyadarshanie, E. A. A. (2024). PREDICTING GARMENT QUALITY BASED ON FABRIC CHARACTERISTICS VIA MACHINE LEARNING.
Rahman, M. H., Aunni, S. A. A., Ahmed, B., Rahman, M. M., Shabuj, M. M. H., Das, D. C., Akter, M. S., Numan, A. A. (2024). "Artificial intelligence for Improved Diagnosis and Treatment of Bacterial Infections", Microbial Bioactives, 7(1),1-18,10036. https://doi.org/10.25163/microbbioacts.7110036
Rahman, M. H., Biswash, M. A. R., Debnath, A., Siddique, M. A. B., Rahman, M. M., Rabbi, M. M. H., Mou, M. A. (2025). "The Future of AI in Laboratory Medicine: Advancing Diagnostics, Personalization, and Healthcare Innovation", Journal of Primeasia, 6(1),1-6,10151. https://doi.org/10.25163/primeasia.6110151
Rahman, M. H., Biswash, M. A. R., Siddique, M. A. B., Rahman, M. M., Mou, M. A., Debnath, A., Fatin, M. (2025). "Significance of Artificial intelligence in clinical and genomic diagnostics", Journal of Precision Biosciences, 7(1),1-14,10149. https://doi.org/10.25163/biosciences.7110149
Rahman, M. H., Islam, T., Hossen, M. E., Chowdhury, M. E., Hayat, R., Shovon, &. M. S. S., Shabbir, H. -. A. -., Alamgir, M., Akter, S., Chowdhury, R., Sunny, A. R. (2024). "Machine Learning in Healthcare: From Diagnostics to Personalized Medicine and Predictive Analytics", Journal of Angiotherapy, 8(12),1-8,10160. https://doi.org/10.25163/angiotherapy.81210160
Rai, P. R., Nanjundan, P., & George, J. P. (2024). Enhancing Industrial Operations through AI-Driven Decision-Making in the Era of Industry 4.0. In AI-Driven IoT Systems for Industry 4.0 (pp. 42-55). CRC Press.
Ramachandran Thampy Bindhu, V., & Kurumbadan Saseendran, A. (2024). AI REVOLUTIONIZING MANUFACTURING: CUTTING-EDGE ADVANCES: Redefining Manufacturing with Intelligent Solutions.
Rathore, B. (2023). Integration of Artificial Intelligence& It’s Practices in Apparel Industry. International Journal of New Media Studies (IJNMS): Vol. ISSN.
Rehman, M. M. U. (2024). Exploring the Link Between Artificial Intelligence and Circular Economy in the Fashion Industry: an example of Lennol Oy. Theseus. https://www.theseus.fi/handle/10024/865358
Rojas, L., Peña, Á., & Garcia, J. (2025). AI-Driven Predictive Maintenance in Mining: A systematic literature review on fault detection, digital twins, and intelligent asset management. Applied Sciences, 15(6), 3337. https://doi.org/10.3390/app15063337
Selçuk, A. Ö., Çörekcioglu, M., & Gungor, A. (2025). An Innovative Performance Evaluation Approach for Textile Businesses. In Corporate Management in the Digital Age (pp. 461-512). IGI Global Scientific Publishing.
Sikka, M. P., Sarkar, A., & Garg, S. (2024). Artificial intelligence (AI) in textile industry operational modernization. Research Journal of Textile and Apparel, 28(1), 67-83.
Uriarte-Gallastegi, N., Arana-Landín, G., Landeta-Manzano, B., & Laskurain-Iturbe, I. (2024). The role of AI in improving Environmental Sustainability: A focus on energy management. Energies, 17(3), 649. https://doi.org/10.3390/en17030649
Vangeri, A. K., Bathrinath, S., Anand, M. C. J., Shanmugathai, M., Meenatchi, N., & Boopathi, S. (2024). Green Supply Chain Management in Eco-Friendly Sustainable Manufacturing Industries. In Environmental Applications of Carbon-Based Materials (pp. 253-287). IGI Global.
Varriale, V., Cammarano, A., Michelino, F., & Caputo, M. (2023). Critical analysis of the impact of artificial intelligence integration with cutting-edge technologies for production systems. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-023-02244-8
Wang, K., Zhao, Y., Gangadhari, R. K., & Li, Z. (2021). Analyzing the adoption challenges of the internet of things (IoT) and artificial intelligence (AI) for smart cities in China. Sustainability, 13(19), 10983. https://doi.org/10.3390/su131910983
Yilmaz, K., Aksu, I. Ö., Göçken, M., & Demirdelen, T. (2024). Sustainable Textile Manufacturing with Revolutionizing Textile Dyeing: Deep Learning-Based, for Energy Efficiency and Environmental-Impact Reduction, Pioneering Green Practices for a Sustainable Future. Sustainability, 16(18), 8152. https://doi.org/10.3390/su16188152
Younus, M. (2025). The Economics of A Zero-Waste Fashion Industry: Strategies To Reduce Wastage, Minimize Clothing Costs, And Maximize & Sustainability. Strategic Data Management and Innovation, 2(01), 116-137.
View Dimensions
View Altmetric
Save
Citation
View
Share