In silico Studies of Parasporin Proteins: Structural and Functional Insights and Proposed Cancer Cell Killing Mechanism for Parasporin 5 and 6

Nasima Aktar\(^{a,b}\), Muhammad Manjurul Karim\(^a\), Shakila Nargis Khan\(^a\), Mustafizur Rahman\(^c\), Anowara Begum\(^a\), Md. Mozammel Hoq\(^a\)*

Supplementary Information
S. Figure 1: Ligand-receptor domain binding orientation of different parasporin protein. Endotoxin_N (4ARX) domain of class 1 and 6 acts as ligand to bind with 2RH1, 5GLI, 1EDN, 3RZE, 3TYF, 4DAJ and 4XNV receptor molecule of HeLa cells (1-7). Moreover, class 1 interacts with 1NKG domain (8-14); Class 5 interacts with HeLa cells through ETX-MTX2 (1UYJ) ligand (15-21); Class 2 parasporin interacts with 2MPM, 2LNL, 3ODU, 4JL7, 4NY9 and 5X33 receptor of HL-60 cells through ETX-MTX2 (1UYJ) domain (22-27); Aerolysin (2PRE) domain (28-33) and Duf916 (1QLE) domain (34-39); 4ARX, 4ION and 4OWL ligand of Class 3 interacts with 2MPM, 2LNL, 3ODU, 4JL7, 4NY9 and 5X33 receptor of HL-60 cells (40-57); Class 4 ETX-MTX2 ligand molecule (1UYJ) and binds with 1XXZ receptor of CACO-2 cells (58).
Supplementary Tables

S. Table 1: *Physico-chemical parameters of different parasporin proteins*

<table>
<thead>
<tr>
<th>PS proteins</th>
<th>No. of A.A</th>
<th>Cellular localization</th>
<th>Certainty</th>
<th>Solubility</th>
<th>PI Site</th>
<th>Potential PI Site</th>
<th>Score (P-value)</th>
<th>Aliphatic Index (AI)</th>
<th>Instability Index</th>
<th>GRAVY</th>
<th>Signal peptide (D-value)</th>
<th>Transmembrane helices</th>
<th>TMPred Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1Aa1</td>
<td>723</td>
<td>Bacterial cytoplasm</td>
<td>0.326</td>
<td>Soluble</td>
<td>None</td>
<td>708</td>
<td>-44.49</td>
<td>5.73</td>
<td>79.88</td>
<td>-0.296</td>
<td>0.167</td>
<td>149-168 (I to O) 1343</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.766537e-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>377-397 (I to O) 1671</td>
</tr>
<tr>
<td></td>
<td>405-423 (I to O) 334</td>
</tr>
<tr>
<td></td>
<td>499-517 (I to O) 811</td>
</tr>
<tr>
<td></td>
<td>616-633 (I to O) 530</td>
</tr>
<tr>
<td></td>
<td>647-666 (I to O) 295</td>
</tr>
<tr>
<td></td>
<td>141-161 (O to I) 1098</td>
</tr>
<tr>
<td></td>
<td>377-397 (O to I) 1119</td>
</tr>
<tr>
<td></td>
<td>403-432 (O to I) 81</td>
</tr>
<tr>
<td></td>
<td>500-519 (O to I) 914</td>
</tr>
<tr>
<td></td>
<td>616-633 (O to I) 421</td>
</tr>
<tr>
<td>PS1Aa2</td>
<td>742</td>
<td>Bacterial membrane</td>
<td>0.113</td>
<td>Soluble</td>
<td>None</td>
<td>725</td>
<td>-23.16</td>
<td>5.35</td>
<td>79.42</td>
<td>-0.294</td>
<td>0.167</td>
<td>168-187 (I to O) 1411</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2.99076e-02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>396-416 (I to O) 1671</td>
</tr>
<tr>
<td></td>
<td>422-441 (I to O) 328</td>
</tr>
<tr>
<td></td>
<td>518-536 (I to O) 763</td>
</tr>
<tr>
<td></td>
<td>635-653 (I to O) 54</td>
</tr>
<tr>
<td></td>
<td>662-685 (I to O) 295</td>
</tr>
<tr>
<td></td>
<td>157-183 (O to I) 1216</td>
</tr>
<tr>
<td></td>
<td>396-416 (O to I) 1119</td>
</tr>
<tr>
<td></td>
<td>422-442 (O to I) 59</td>
</tr>
<tr>
<td></td>
<td>519-538 (O to I) 912</td>
</tr>
<tr>
<td>PS1Aa3</td>
<td>723</td>
<td>Bacterial cytoplasm</td>
<td>0.326</td>
<td>Soluble</td>
<td>None</td>
<td>708</td>
<td>-44.49</td>
<td>5.73</td>
<td>79.88</td>
<td>-0.296</td>
<td>0.167</td>
<td>149-168 (I to O) 1343</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1.766537e-01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>377-397 (I to O) 1671</td>
</tr>
<tr>
<td></td>
<td>403-423 (I to O) 334</td>
</tr>
<tr>
<td></td>
<td>499-517 (I to O) 811</td>
</tr>
<tr>
<td></td>
<td>616-633 (I to O) 530</td>
</tr>
<tr>
<td></td>
<td>643-666 (I to O) 295</td>
</tr>
<tr>
<td></td>
<td>141-164 (O to I) 1098</td>
</tr>
<tr>
<td></td>
<td>377-397 (O to I) 1119</td>
</tr>
<tr>
<td></td>
<td>403-423 (O to I) 81</td>
</tr>
<tr>
<td></td>
<td>500-519 (O to I) 914</td>
</tr>
<tr>
<td></td>
<td>616-633 (O to I) 421</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1Aa4</td>
<td>723</td>
<td>Bacterial cytoplasm</td>
<td>0.326</td>
<td>Soluble</td>
<td>None</td>
<td>708</td>
<td>-44.75 (1.799218e-01)</td>
<td>5.73</td>
<td>79.34</td>
<td>38.95</td>
<td>Stable</td>
<td>-0.301</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PS1Aa5</td>
<td>723</td>
<td>Bacterial cytoplasm</td>
<td>0.326</td>
<td>Soluble</td>
<td>None</td>
<td>708</td>
<td>-44.49 (1.766537e-01)</td>
<td>5.79</td>
<td>79.75</td>
<td>39.61</td>
<td>Stable</td>
<td>-0.298</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PS1Aa6</td>
<td>754</td>
<td>Bacterial cytoplasm</td>
<td>0.421</td>
<td>Soluble</td>
<td>None</td>
<td>737</td>
<td>-43.21 (1.614720e-01)</td>
<td>6.01</td>
<td>81.25</td>
<td>37.81</td>
<td>Stable</td>
<td>-0.290</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PS1Ab1</td>
<td>726</td>
<td>Bacterial cytoplasm</td>
<td>0.281</td>
<td>Soluble</td>
<td>None</td>
<td>701</td>
<td>-34.29 (8.129167e-02)</td>
<td>5.96</td>
<td>81.03</td>
<td>39.65</td>
<td>Stable</td>
<td>-0.324</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PS1Ab2</td>
<td>726</td>
<td>Bacterial cytoplasm</td>
<td>0.294</td>
<td>Soluble</td>
<td>None</td>
<td>701</td>
<td>-34.29 (8.129167e-02)</td>
<td>5.77</td>
<td>81.71</td>
<td>39.87</td>
<td>Stable</td>
<td>-0.324</td>
<td>0.141</td>
</tr>
<tr>
<td>PS1Ac1</td>
<td>777</td>
<td>Bacterial membrane</td>
<td>0.111</td>
<td>Soluble</td>
<td>None</td>
<td>762</td>
<td>-38.00 (1.094560e-01)</td>
<td>5.83</td>
<td>82.11</td>
<td>38.95</td>
<td>Stable</td>
<td>-0.323</td>
<td>0.166</td>
</tr>
<tr>
<td>PS1Ac2</td>
<td>777</td>
<td>Bacterial membrane</td>
<td>0.111</td>
<td>Soluble</td>
<td>None</td>
<td>762</td>
<td>-38.00 (1.094560e-01)</td>
<td>5.75</td>
<td>81.98</td>
<td>39.42</td>
<td>Stable</td>
<td>-0.327</td>
<td>0.178</td>
</tr>
<tr>
<td>PS1Ad1</td>
<td>758</td>
<td>Bacterial membrane</td>
<td>0.113</td>
<td>Soluble</td>
<td>None</td>
<td>741</td>
<td>-29.34 (5.320892e-02)</td>
<td>5.23</td>
<td>82.64</td>
<td>42.31</td>
<td>Unstable</td>
<td>-0.279</td>
<td>0.146</td>
</tr>
</tbody>
</table>

https://doi.org/10.25163/microbbioacts.21007A0621280219
PS2Aa1	338	Bacterial cytoplasm	0.567	Soluble	None	316	-80.18 (8.001545e-01)	5.35	63.11	34.26 Stable	-0.433	0.161	146-163 (I to O)	356
PS2Aa2	338	Bacterial cytoplasm	0.531	Soluble	None	316	-80.03 (7.981347e-01)	5.21	62.54	34.09 Stable	-0.441	0.164	146-163 (I to O)	356
PS2Ab1	304	Bacterial cytoplasm	0.320	Soluble	None	287	-34.04 (7.962966e-02)	5.12	75	39.99 Stable	-0.258	0.126	254-276 (I to O)	109
PS3Aa1	825	Bacterial membrane	0.183	Soluble	None	802	-66.14 (5.584945e-01)	6.18	76.22	30.98 Stable	-0.496	0.183	75-99 (I to O)	1655
PS3Ab1	829	Bacterial membrane	0.183	Soluble	None	806	-66.14 (5.584945e-01)	6.19	75.16	31.41 Stable	-0.508	0.167	75-99 (I to O)	1655
PS4Aa1	275	Bacterial cytoplasm	0.286	Soluble	None	261	-40.05 (1.280721e-01)	6.09	81.16	29.03 Stable	-0.171	0.201	17-37 (I to O)	204
PS5Aa1	305	Bacterial cytoplasm	0.602	Soluble	None	276	-59.46 (4.238438e-01)	5.99	72.85	35.57 Stable	-0.439	0.126	158-176 (I to O)	392
PS6Aa1	753	Bacterial Cytoplasm	0.450	Soluble	None	736	-52.36 (2.919484e-01)	5.75	94.79	33.39 Stable	-0.226	0.205	96-116 (I to O)	240

https://doi.org/10.25163/microbbioacts.21007A0621280219
S. Table 2: **3D structural properties of parasporin proteins**

<table>
<thead>
<tr>
<th>PS protein</th>
<th>3D structure (Swiss Model)</th>
<th>PDB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMQE</td>
<td>Sequence Identity</td>
</tr>
<tr>
<td>PS1Aa1</td>
<td>0.47</td>
<td>19</td>
</tr>
<tr>
<td>PS1Aa2</td>
<td>0.45</td>
<td>19</td>
</tr>
<tr>
<td>PS1Aa3</td>
<td>0.47</td>
<td>19</td>
</tr>
<tr>
<td>PS1Aa4</td>
<td>0.47</td>
<td>20</td>
</tr>
<tr>
<td>PS1Aa5</td>
<td>0.47</td>
<td>19</td>
</tr>
<tr>
<td>PS1Aa6</td>
<td>0.45</td>
<td>19</td>
</tr>
<tr>
<td>PS1Ab1</td>
<td>0.46</td>
<td>18</td>
</tr>
<tr>
<td>PS1Ab2</td>
<td>0.47</td>
<td>19</td>
</tr>
<tr>
<td>PS1Ac1</td>
<td>0.42</td>
<td>18</td>
</tr>
<tr>
<td>PS1Ac2</td>
<td>0.41</td>
<td>18</td>
</tr>
<tr>
<td>PS1Ad1</td>
<td>0.44</td>
<td>19</td>
</tr>
<tr>
<td>PS2Aa1</td>
<td>0.69</td>
<td>100</td>
</tr>
<tr>
<td>PS2Aa2</td>
<td>0.69</td>
<td>99</td>
</tr>
<tr>
<td>PS2Ab1</td>
<td>0.71</td>
<td>88</td>
</tr>
<tr>
<td>PS3Aa1</td>
<td>0.48</td>
<td>32</td>
</tr>
<tr>
<td>PS3Ab1</td>
<td>0.49</td>
<td>33</td>
</tr>
<tr>
<td>PS4Aa1</td>
<td>0.67</td>
<td>36</td>
</tr>
<tr>
<td>PS protein</td>
<td>Ramachandran plot</td>
<td></td>
</tr>
<tr>
<td>Most favoured regions</td>
<td>Additional allowed regions</td>
<td>Generously allowed regions</td>
</tr>
<tr>
<td>[A,B,L]</td>
<td>[a,b,l,p]</td>
<td>[~a,~b,~l,~p]</td>
</tr>
<tr>
<td>PS1Aa1</td>
<td>77.2</td>
<td>10.4</td>
</tr>
<tr>
<td>PS1Aa2</td>
<td>77.2</td>
<td>9.6</td>
</tr>
<tr>
<td>PS1Aa3</td>
<td>77.5</td>
<td>10.2</td>
</tr>
<tr>
<td>PS1Aa4</td>
<td>78.0</td>
<td>9.5</td>
</tr>
<tr>
<td>PS1Aa5</td>
<td>77.8</td>
<td>9.8</td>
</tr>
<tr>
<td>PS1Aa6</td>
<td>76.7</td>
<td>9.0</td>
</tr>
<tr>
<td>PS1Ab1</td>
<td>78.4</td>
<td>8.9</td>
</tr>
<tr>
<td>PS1Ab2</td>
<td>59.0</td>
<td>9.4</td>
</tr>
<tr>
<td>PS1Ac1</td>
<td>61.6</td>
<td>7.4</td>
</tr>
<tr>
<td>PS1Ac2</td>
<td>60.9</td>
<td>8.2</td>
</tr>
<tr>
<td>PS1Ad1</td>
<td>76.8</td>
<td>8.8</td>
</tr>
<tr>
<td>PS2Aa1</td>
<td>80.3</td>
<td>4.1</td>
</tr>
<tr>
<td>PS2Aa2</td>
<td>90.6</td>
<td>4.7</td>
</tr>
<tr>
<td>PS2Ab1</td>
<td>85.3</td>
<td>4.0</td>
</tr>
<tr>
<td>PS3Aa1</td>
<td>76.4</td>
<td>8.5</td>
</tr>
<tr>
<td>PS3Ab1</td>
<td>75.8</td>
<td>9.3</td>
</tr>
<tr>
<td>PS4Aa1</td>
<td>90.6</td>
<td>4.7</td>
</tr>
<tr>
<td>PS5Aa1</td>
<td>90.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PS6Aa1</td>
<td>74.6</td>
<td>12.5</td>
</tr>
</tbody>
</table>

S. Table 4: Domain Information of parasporin proteins

Protein (PS)	Interpro	Pfam									
Domain	PR	Location	Database Used	E-value	Biological Function	Family	Domain	Clan	Location	Database	E-value

https://doi.org/10.25163/microbioacts.21007A0621280219
<table>
<thead>
<tr>
<th>PS1Aa1</th>
<th>Delta endotoxin, N-terminal</th>
<th>IPR0 0563 9</th>
<th>135 – 394</th>
<th>GENE3 D</th>
<th>9.7E-52</th>
<th>GO:0009405 pathogenesis</th>
<th>Endotoxin_N</th>
<th>delta endotoxin, N-terminal domain</th>
<th>n/a</th>
<th>147–348</th>
<th>Pfam</th>
<th>5.2e-13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>168 – 332</td>
<td></td>
<td>Pfam</td>
<td>5.2E-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85 – 336 & 367 – 392</td>
<td></td>
<td>SUPER FAMILY</td>
<td>5.36E-49 & 5.36E-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galactose-binding domain-like</td>
<td>IPR0 0897 9</td>
<td>625 – 722</td>
<td>GENE3 D</td>
<td>2.9E-8</td>
<td></td>
<td>Endotoxin_C</td>
<td>delta endotoxin</td>
<td>CL0 202</td>
<td>588–723</td>
<td>Pfam</td>
<td>3.2e-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>581 – 722</td>
<td></td>
<td>SUPER FAMILY</td>
<td>2.92E-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta endotoxin, C-terminal</td>
<td>IPR0 0563 8</td>
<td>590 – 722</td>
<td>Pfam</td>
<td>3.2E-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS1Aa2</td>
<td>Delta endotoxin, N-terminal</td>
<td>IPR0 0563 9</td>
<td>155 – 413</td>
<td>GENE3 D</td>
<td>2.4E-51</td>
<td>GO:0009405 pathogenesis</td>
<td>Endotoxin_N</td>
<td>delta endotoxin, N-terminal domain</td>
<td>n/a</td>
<td>165–412</td>
<td>Pfam</td>
<td>8.1e-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>189 – 352</td>
<td></td>
<td>Pfam</td>
<td>8.0E-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104 – 355 & 386 – 411</td>
<td></td>
<td>SUPER FAMILY</td>
<td>6.15E-50 & 6.15E-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galactose-binding domain-like</td>
<td>IPR0 0897 9</td>
<td>644 – 740</td>
<td>GENE3 D</td>
<td>1.6E-7</td>
<td></td>
<td>Endotoxin_C</td>
<td>delta endotoxin</td>
<td>CL0 202</td>
<td>607–742</td>
<td>Pfam</td>
<td>9.2e-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 – 741</td>
<td></td>
<td>SUPER FAMILY</td>
<td>9.72E-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Domain Description</td>
<td>IPR0</td>
<td>Pfam Domain</td>
<td>Pfam E-value</td>
<td>GO:0009405 Pathogenesis</td>
<td>Pfam Domain</td>
<td>Pfam E-value</td>
<td>Pfam Domain</td>
<td>Pfam E-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR0 05638</td>
<td>609 – 741 Pfam</td>
<td>9.2E-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps1 Aa3</td>
<td>Delta endotoxin, N-terminal</td>
<td>IPR0 05639</td>
<td>135 – 394</td>
<td>GENE3 D</td>
<td>9.7E-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168 – 332</td>
<td>Pfam</td>
<td>5.2E-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85 – 336 & 367 – 392 SUPER FAMILY</td>
<td>5.36E-49 & 5.36E-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td>IPR0 08979</td>
<td>625 – 722 GENE3 D</td>
<td>2.9E-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>581 – 722</td>
<td>SUPER FAMILY</td>
<td>2.92E-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR0 05638</td>
<td>590 – 722 Pfam</td>
<td>3.2E-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ps1 Aa4</td>
<td>Delta endotoxin, N-terminal</td>
<td>IPR0 05639</td>
<td>135 – 394</td>
<td>GENE3 D</td>
<td>9.7E-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168 – 332</td>
<td>Pfam</td>
<td>5.2E-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85 – 336 & 367 – 392 SUPER FAMILY</td>
<td>5.36E-49 & 5.36E-49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td>IPR0 08979</td>
<td>625 – 722 GENE3 D</td>
<td>3.3E-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Pfam domains are listed with their respective E-values.
- GO:0009405 pathway is associated with pathogenesis.
- Endotoxin_N and Delta endotoxin, N-terminal domain are identified.
<table>
<thead>
<tr>
<th>Domain-liked</th>
<th>Accession</th>
<th>Start</th>
<th>End</th>
<th>E-value</th>
<th>Description</th>
<th>Score</th>
<th>Pfam</th>
<th>Start</th>
<th>End</th>
<th>E-value</th>
<th>Description</th>
<th>Score</th>
<th>Pfam</th>
<th>Start</th>
<th>End</th>
<th>E-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR005638</td>
<td>590</td>
<td>722</td>
<td>2.7E-8</td>
<td>Pfam</td>
<td>9</td>
<td>581</td>
<td>722</td>
<td>SUPER FAMILY</td>
<td>3.16E-14</td>
<td>n</td>
<td>n/a</td>
<td>147</td>
<td>350</td>
<td>5e-13</td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, N-terminal</td>
<td>IPR005639</td>
<td>168</td>
<td>332</td>
<td>5.0E-13</td>
<td>Pfam</td>
<td>135</td>
<td>394</td>
<td>SUPER FAMILY</td>
<td>1.0E-51</td>
<td>GO:0009405 pathogenesis</td>
<td>n/a</td>
<td>Endotoxin_N, N-terminal domain</td>
<td>147</td>
<td>350</td>
<td>5e-13</td>
<td></td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td>IPR008979</td>
<td>581</td>
<td>722</td>
<td>2.92E-14</td>
<td>SUPER FAMILY</td>
<td>625</td>
<td>722</td>
<td>Gene3 D</td>
<td>2.9E-8</td>
<td>n/a</td>
<td>Endotoxin_C</td>
<td>delta endotoxin</td>
<td>147</td>
<td>350</td>
<td>5e-13</td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR005638</td>
<td>590</td>
<td>722</td>
<td>3.2E-8</td>
<td>Pfam</td>
<td>166</td>
<td>425</td>
<td>Gene3 D</td>
<td>8.3E-52</td>
<td>GO:0009405 pathogenesis</td>
<td>n/a</td>
<td>Endotoxin_N, N-terminal domain</td>
<td>178</td>
<td>424</td>
<td>7.6e-13</td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, N-terminal</td>
<td>IPR005639</td>
<td>197</td>
<td>364</td>
<td>7.5E-13</td>
<td>Pfam</td>
<td>116</td>
<td>367 & 398</td>
<td>SUPER FAMILY</td>
<td>1.16E-48</td>
<td>Endotoxin_N, N-terminal domain</td>
<td>178</td>
<td>424</td>
<td>7.6e-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Type</td>
<td>Functional Domain</td>
<td>IPR0</td>
<td>Pfam D</td>
<td>P-Value</td>
<td>GO terms</td>
<td>Endotoxin Type</td>
<td>CL0</td>
<td>Pfam D</td>
<td>P-Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td></td>
<td>IPR0 0897 9</td>
<td>655–752</td>
<td>GENE3 D</td>
<td>4.2E-8</td>
<td>Endotoxin_C</td>
<td>CL0 202</td>
<td>619–754</td>
<td>3.5e-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>612–753</td>
<td>SUPER FAMIL Y</td>
<td>5.22E-15</td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td></td>
<td>IPR0 0563 8</td>
<td>621–753</td>
<td>Pfam</td>
<td>3.5E-9</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, N-terminal</td>
<td></td>
<td>IPR0 0563 9</td>
<td>135–394</td>
<td>GENE3 D</td>
<td>6.5E-52</td>
<td>GO:0009405 pathogenesis</td>
<td>Delta endotoxin_C</td>
<td>n/a</td>
<td>147–393</td>
<td>1.4e-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>166–333</td>
<td>Pfam</td>
<td>1.4E-13</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PS1Ab1</td>
<td>Galactose-binding domain-like</td>
<td>IPR0 0897 9</td>
<td>579–725</td>
<td>GENE3 D</td>
<td>2.5E-7</td>
<td>Endotoxin_C</td>
<td>CL0 202</td>
<td>588–726</td>
<td>4.4e-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>581–725</td>
<td>SUPER FAMIL Y</td>
<td>2.02E-8</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td></td>
<td>IPR0 0563 8</td>
<td>590–725</td>
<td>Pfam</td>
<td>4.4E-7</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PS1Ab2</td>
<td>Delta endotoxin, N-terminal</td>
<td>IPR0 0563 9</td>
<td>135–394</td>
<td>GENE3 D</td>
<td>9.1E-52</td>
<td>GO:0009405 pathogenesis</td>
<td>Delta endotoxin_C</td>
<td>n/a</td>
<td>147–393</td>
<td>2.4e-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>166–333</td>
<td>Pfam</td>
<td>2.4E-13</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

https://doi.org/10.25163/microbbioacts.21007A0621280219
<table>
<thead>
<tr>
<th>Domain</th>
<th>Accession</th>
<th>Start – End</th>
<th>Pfam ID</th>
<th>E-value</th>
<th>GO:0009405</th>
<th>Pathogenesis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactose-binding domain-like</td>
<td>IPR008979</td>
<td>579 – 725</td>
<td>SUPER FAMILY</td>
<td>2.6E-8</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>581 – 725</td>
<td>SUPER FAMILY</td>
<td>1.59E-8</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR005638</td>
<td>590 – 725</td>
<td>Pfam</td>
<td>3.8E-8</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td>PS1Ac1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, N-terminal</td>
<td>IPR005639</td>
<td>155 – 413</td>
<td>GENE3 D</td>
<td>2.5E-51</td>
<td>GO:0009405</td>
<td>pathogenesis</td>
<td>cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>189 – 352</td>
<td>Pfam</td>
<td>5.7E-14</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104 – 355 &</td>
<td>SUPER FAMILY</td>
<td>4.97E-49</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>386 – 411</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td>IPR008979</td>
<td>683 – 776</td>
<td>GENE3 D</td>
<td>3.2E-4</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR005638</td>
<td>683 – 776</td>
<td>Pfam</td>
<td>1.8E-6</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
<tr>
<td>PS1Ac2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, N-terminal</td>
<td>155 – 413</td>
<td></td>
<td>GENE3 D</td>
<td>2.5E-51</td>
<td>GO:0009405</td>
<td>pathogenesis</td>
<td>cleared</td>
</tr>
<tr>
<td></td>
<td>189 – 351</td>
<td></td>
<td>Pfam</td>
<td>9.2E-14</td>
<td></td>
<td></td>
<td>cleared</td>
</tr>
</tbody>
</table>

https://doi.org/10.25163/microbbioacts.21007A0621280219
<table>
<thead>
<tr>
<th>Protein Family</th>
<th>Domain</th>
<th>Gene</th>
<th>E-Value</th>
<th>Pfam/Cl0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galactose-binding domain-like</td>
<td>104–355 & 386–411</td>
<td>SUPER FAMILY</td>
<td>4.06E-49 & 4.06E-49</td>
<td>4.06E-49 & 4.06E-49</td>
<td>Endotoxin_C delta endotoxin</td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>683–776</td>
<td>GENE3 D</td>
<td>3.2E-4</td>
<td>4.06E-49 & 4.06E-49</td>
<td>Endotoxin_C delta endotoxin</td>
</tr>
<tr>
<td>Delta endotoxin, N-terminal</td>
<td>167–425</td>
<td>GENE3 D</td>
<td>2.4E-51</td>
<td>4.06E-49 & 4.06E-49</td>
<td>Endotoxin_N delta endotoxin, N-terminal domain</td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td>611–757</td>
<td>GENE3 D</td>
<td>2.9E-9</td>
<td>4.06E-49 & 4.06E-49</td>
<td>Endotoxin_C delta endotoxin</td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>621–757</td>
<td>Pfam</td>
<td>1.3E-8</td>
<td>4.06E-49 & 4.06E-49</td>
<td>Endotoxin_C delta endotoxin</td>
</tr>
<tr>
<td>Aerolysin-like toxin, beta complex domain</td>
<td>130–267</td>
<td>GENE3 D</td>
<td>1.1E-17</td>
<td>4.06E-49 & 4.06E-49</td>
<td>ETX_M Clostridium epsilon toxin ETX/Bacillus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clostridium epsilon toxin ETX/Bacillus</td>
</tr>
</tbody>
</table>

https://doi.org/10.25163/microbbioacts.21007A0621280219
<table>
<thead>
<tr>
<th>Protein Description</th>
<th>Accession</th>
<th>Start</th>
<th>End</th>
<th>Description</th>
<th>Accession</th>
<th>Start</th>
<th>End</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerolysin-like toxin, beta complex domain</td>
<td>IPR0 2330 7</td>
<td>130 - 263</td>
<td>GENE3 D</td>
<td>8.8E-18</td>
<td>ETX_M TX2</td>
<td>Clostridium epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2</td>
<td>CL0 90–303</td>
<td>Pfam 8.3e-07</td>
</tr>
<tr>
<td>Aerolysin-like toxin, beta complex domain</td>
<td>IPR0 2330 7</td>
<td>106 - 243</td>
<td>GENE3 D</td>
<td>2.1E-16</td>
<td>ETX_M TX2</td>
<td>Clostridium epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2</td>
<td>CL0 62–207</td>
<td>Pfam 1.1e-05</td>
</tr>
<tr>
<td>Domain Description</td>
<td>IPR0</td>
<td>Pfam Id</td>
<td>Pfam Domain</td>
<td>Pfam Score</td>
<td>Function</td>
<td>Pfam Id</td>
<td>Pfam Score</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, central domain</td>
<td>IPR0 322-530</td>
<td>SUPER FAMIL Y</td>
<td>1.46E-33</td>
<td>receptor binding</td>
<td>delta endotoxin</td>
<td>N/a</td>
<td>327-530</td>
<td>Pfam 3e-11</td>
</tr>
<tr>
<td>Delta endotoxin, central domain, subgroup 1</td>
<td>IPR0 327-530</td>
<td>Pfam</td>
<td>3.0E-11</td>
<td></td>
<td>Endotoxin_C</td>
<td>Pfam</td>
<td>3.0E-11</td>
<td></td>
</tr>
<tr>
<td>Galactose-binding domain-like</td>
<td>IPR0 513-678</td>
<td>GENE3 D</td>
<td>8.9E-50</td>
<td></td>
<td>Galactose-binding domain-like</td>
<td>Pfam</td>
<td>8.9E-50</td>
<td></td>
</tr>
<tr>
<td>Delta endotoxin, C-terminal</td>
<td>IPR0 540-674</td>
<td>Pfam</td>
<td>1.5E-37</td>
<td></td>
<td>Delta endotoxin, C-terminal</td>
<td>Pfam</td>
<td>1.5E-37</td>
<td></td>
</tr>
<tr>
<td>Ricin B, lectin domain</td>
<td>IPR0 684-824</td>
<td>SUPER FAMIL Y</td>
<td>2.7E-32</td>
<td></td>
<td>RicinB_lectin_2</td>
<td>Pfam</td>
<td>2.7E-32</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>100 – 279 Pfam 7.1E-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 – 257 & 293 – 319 SUPER FAMIL Y 6.67E-83 & 6.67E-83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta endotoxin, central domain</td>
<td>IPR0 322 – 530</td>
<td>SUPER FAMIL Y</td>
<td>1.57E-33</td>
<td>Endotoxin_M delta endotoxin</td>
<td>N/a</td>
<td>327 – 530</td>
<td>Pfam 9.5e-11</td>
</tr>
<tr>
<td></td>
<td>333 – 421 GENE3 D 2.0E-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta endotoxin, central domain, subgroup 1</td>
<td>IPR0 327 – 530</td>
<td>Pfam 9.5E-11</td>
<td></td>
<td>Endotoxin_C delta endotoxin</td>
<td>N/a</td>
<td>540 – 681</td>
<td>Pfam 7.2e-37</td>
</tr>
<tr>
<td></td>
<td>Galactose-binding domain-like</td>
<td>IPR0 513 – 685</td>
<td>GENE3 D 1.2E-51</td>
<td></td>
<td>RicinB_lectin_2 Ricin-type beta-trefoil lectin domain-like</td>
<td>CL0 202</td>
<td>715 – 816</td>
<td>Pfam 1.6e-15</td>
</tr>
<tr>
<td></td>
<td>532 – 681 SUPER FAMIL Y 4.89E-37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta endotoxin, C-terminal</td>
<td>IPR0 540 – 681</td>
<td>Pfam 7.2E-37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS4Aa1</td>
<td>Aerolysin-like toxin, beta complex domain</td>
<td>IPR0 39 – 186</td>
<td>GENE3D</td>
<td>1.2E-24</td>
<td>-</td>
<td>Clostridium epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2</td>
<td>Cl0 345</td>
<td>33–252</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------------</td>
<td>--</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>PS5Aa1</td>
<td>Aerolysin-like toxin, beta complex domain</td>
<td>IPR0 37 – 196</td>
<td>GENE3D</td>
<td>2.2E-25</td>
<td>ETX_MTX2</td>
<td>Clostridium epsilon toxin ETX/Bacillus mosquitocidal toxin MTX2</td>
<td>Cl0 13–276</td>
<td>Pfam 5.4e-27</td>
</tr>
<tr>
<td>PS6Aa1</td>
<td>Delta endotoxin, N-terminal</td>
<td>IPR0</td>
<td>128 – 355</td>
<td>Gene3 D</td>
<td>3.3E-33</td>
<td>GO:0009405 pathogenesis</td>
<td>Endotoxin N-terminal domain</td>
<td>N/a</td>
</tr>
</tbody>
</table>

S. Table 5: *Parasporin protein and their probable ligand identification*

<table>
<thead>
<tr>
<th>PS Proteins</th>
<th>Domain</th>
<th>Ligand (PDB)</th>
<th>Ligand present (PDB)</th>
<th>Ligand present (RaptorX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1Aa1</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Aa2</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Aa3</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄, DOC, ZN, C2E, CL</td>
</tr>
<tr>
<td>PS1Aa4</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄, CA</td>
</tr>
<tr>
<td>PS1Aa5</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄, GUN, ZEA, NA, NEU</td>
</tr>
<tr>
<td>PS1Aa6</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Ab1</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Ab2</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Ac1</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Ac2</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, 13D, SO₄</td>
</tr>
<tr>
<td>PS1Ad1</td>
<td>Endotoxin</td>
<td>4ARX</td>
<td>GOL, 13D</td>
<td>BR, NGA, SO₄</td>
</tr>
<tr>
<td>PS2Aa1</td>
<td>ETX_MTX2</td>
<td>1UYJ</td>
<td>U1</td>
<td>PO₄, BOG, EDO, U1, GOL, CL</td>
</tr>
<tr>
<td>PS2Aa2</td>
<td>ETX_MTX2</td>
<td>1UYJ</td>
<td>U1</td>
<td>PO₄, BOG, EDO, U1, GOL, CL</td>
</tr>
</tbody>
</table>

https://doi.org/10.25163/microbioacts.21007A0621280219
Table 6: Parasporin class showing higher toxicity cancer cell lines, their receptors with PDB ID and probable ligands with which they tend to bind/interact

<table>
<thead>
<tr>
<th>Parasporin Protein</th>
<th>Cell Line</th>
<th>Receptors</th>
<th>PDB ID of Receptors</th>
<th>Binding site for Residue</th>
<th>Ligand with whom they Bind</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 1, 5 and 6</td>
<td>Hela</td>
<td>1. Adrenergic β2</td>
<td>2RH1</td>
<td>2RH1_A_BC4_2_414</td>
<td>CLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_AC2_6_402</td>
<td>SO4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_BC2_5_412</td>
<td>CLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_AC8_11_408</td>
<td>CAU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_AC9_4_409</td>
<td>BU1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_BC1_3_411</td>
<td>ACM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_AC3_4_403</td>
<td>SO4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_BC5_2_415</td>
<td>PLM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_BC3_2_413</td>
<td>CLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2RH1_A_AC5_6_405</td>
<td>SO4</td>
</tr>
<tr>
<td>Compounds</td>
<td>Reference</td>
<td>Source</td>
<td>2RH1_A_BC6_3_416</td>
<td>2RH1_A_AC1_9_401</td>
<td>2RH1_A_AC7_3_407</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2. Endothelin Type-B</td>
<td>5GLI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endothelin-1</td>
<td>1EDN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Histamine H1</td>
<td>3RZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Lysophospholipid</td>
<td>3TYF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Muscarinic</td>
<td>4DAJ</td>
<td>4DAJ_A_AC1_12_2000</td>
<td>OHK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DAJ_A_AC5_2_2004</td>
<td>PO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DAJ_A_AC3_3_2002</td>
<td>PO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DAJ_A_AC4_1_2003</td>
<td>PO4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4DAJ_A_AC2_2_2001</td>
<td>PO4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Purinoceptor	4XNV	4XNV_A_AC9_4_1109	OLC
		4XNV_A_AD2_5_1111	OLC
		4XNV_A_AC1_10_1101	BUR
		4XNV_A_AC5_7_1105	Y01
		4XNV_A_AC4_5_1104	Y01
		4XNV_A_AD1_6_1110	OLC
		4XNV_A_AC8_3_1108	OLC
		4XNV_A_AC7_5_1107	OLC
		4XNV_A_AC2_4_1102	CLR
		4XNV_A_AD3_5_1112	OLC
		4XNV_A_AD4_6_1113	OLC
		4XNV_A_AC3_4_1103	Y01
		4XNV_A_AD6_4_1115	ZN

<p>| PS 2, 3 & 4 | HL-60 | Chemokine CCR1 | 4NY9 | 4NY9_A_AC2_7_502 | GOL|
| | | | | 4NY9_A_AC1_9_501 | 2Q4|
| | | Chemokine CCR3 | 2MPM | N/A |
| | | Chemokine CXCR1 | 2LNL | N/A |
| | | Chemokine CXCR2 | 4JL7 | N/A |
| | | Chemokine CXCR4 | 3ODU | N/A |</p>
<table>
<thead>
<tr>
<th>PS 4</th>
<th>Caco-2</th>
<th>Somatostatin</th>
<th>1XXZ</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukotriene LTB4</td>
<td>5X33</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>