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Abstract 
Background: Water is fundamental to the survival of all life 

forms, yet access to clean and safe water remains a critical 

challenge worldwide. Contaminated water is a significant 

contributor to waterborne diseases, highlighting the need 

for effective water quality monitoring. The Water Quality 

Index (WQI) is a standard tool for assessing water quality; 

however, traditional WQI methods are often constrained 

by inconsistencies, laboratory inaccuracies, and human 

error. Methods: This study aimed to overcome these 

limitations by integrating advanced machine learning (ML) 

techniques into WQI prediction. Physicochemical 

parameters, including pH, chloride (Cl⁻), sulfate (SO₄²⁻), 
sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), magnesium 

(Mg²⁺), total hardness, and total dissolved solids, were 

collected from diverse water sources to form a robust 

dataset. ML algorithms such as Gradient Boosting, 

Random Forest, and XGBoost, augmented with 

explainable AI (XAI), were employed to enhance 

prediction accuracy. The dataset was split into training  

(70%), testing (15%), and validation (15%) subsets, and 

model performance was assessed using RMSE, MSE, MAE, 

and R² metrics. Results: Gradient Boosting outperformed 

other models, achieving 96% accuracy on the test dataset 

after, fine-tuning. It demonstrated superior predictive 

capabilities as evidenced by its performance metrics. 

These results indicate the potential for ML techniques to 

address the limitations of traditional WQI methods. 

Conclusion: This study demonstrates the effectiveness of 

ML-driven approaches in improving water quality

assessments. The integration of Gradient Boosting and

explainable AI provides a reliable framework for WQI

prediction, enabling better decision-making in

environmental health policies and water resource

management. This approach offers a pathway to more

efficient and accurate water quality monitoring systems.

Keywords: Water Quality Index (WQI), Water Quality Monitoring, 

Machine Learning Algorithms, Explainable AI (XAI), Predictive 
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Introduction 

Most of the freshwater bodies around the world are being 
contaminated, reducing the suitability of the water. Urbanization 
has led to an increase in water pollution, posing a severe concern  
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for human life (Agrawal et al., 2021; Chen et al., 2022). Due to the 
continuous growth in urbanization, only 0.3% of the world's water 
resources are usable (Kılıç, 2020). Around 785 million people 
globally do not have access to a safe and reliable water source  
(Shadabi & Ward, 2022), and around 2.5 billion people do not have 
proper sanitation. This lack of access to clean and safe water 
undermines efforts to end extreme  poverty and disease in the 
world's poorest countries ( Schweitzer et al., 2020). Water quality 
assessment plays a crucial role in informing water management 
decisions. It valuable information about the status of water 
resources, enabling authorities to identify potential risks and take 
appropriate measures to protect and improve water quality.    
Assessment methods, such as the Canadian Council of Ministers of 
the Environment Water Quality Index (CCME-WQI), the National 
Sanitation Foundation Water Quality Index (NSF-WQI), the 
Irrigation Water Quality Index (IWQI) and the Weighted 
Arithmetic Water Quality Index Method (WAWQI) are commonly 
used to evaluate water quality (Islam, 2024; Khan et al., 2022). These 
methods analyse various physicochemical parameters to determine 
the overall quality of water, including its suitability for drinking, 
irrigation, and other purposes. By assessing water quality, 
authorities can identify pollution sources, such as industrial 
effluents, sewage, and agricultural runoff, and implement measures 
to mitigate their impact (Lamrini et al., 2022; To, 2020). Water 
quality assessment also helps in monitoring trends and identifying 
areas where water quality is deteriorating, allowing for targeted 
interventions and the development of effective water management 
strategies (Lee, 2021). 
In this article, the authors aim to review existing literature on water 
quality assessment methods, including traditional indices and the 
application of machine learning techniques. Additionally, they seek 
to develop machine learning models for predicting WQI values 
based on physicochemical parameters, evaluate the performance of 
these machine learning models against traditional methods in terms 
of accuracy and efficiency, and investigate the potential of machine 
learning models to provide dynamic and adapTable solutions for 
water quality assessment in the face of changing environmental 
conditions. 
In recent years, there has been a growing interest in utilizing 
machine learning techniques to enhance water quality assessment 
by predicting WQI values. Machine learning algorithms have 
shown promise in their ability to analyse vast datasets and generate 
predictive models (Oreški et al., 2023). These models try to offer a 
more efficient and accurate way of calculating WQI than traditional 
methods, which involve manual measurement and analysis of 
various parameters, by harnessing the power of data-driven 
modelling (Tabassum et al., 2023). However, multiple studies have 
revealed that the traditional WQI model produced significantly 
higher uncertainty in its modelling process (Juwana et al., 2016; 

Rezaie-Balf et al., 2020; Sutadian et al., 2015; Uddin et al., 2021). As 
a result, the WQI model needs to reflect accurate water quality 
status by overestimating and underestimating of WQI values. Some 
researchers have opted for a non-physical approach to overcome 
these issues, successfully predicting WQI using artificial 
intelligence (AI). 
However, while the narrative above outlines the current challenges 
and the potential of machine learning in water quality assessment, 
it is imperative to ground this discussion in existing scientific 
literature. Therefore, this study aims to bridge this gap by 
conducting a comprehensive evaluation of water quality assessment 
through machine learning, focusing on predicting WQI values. 
The application of machine learning techniques in water quality 
assessment, specifically for the prediction of WQI, is not merely a 
replacement for deterministic expressions derived from water 
quality parameters. While it is true that traditional methods offer a 
straightforward equation for calculating WQI, the complexity and 
variability inherent in water quality data often necessitate a more 
nuanced approach. Machine learning models excel in identifying 
patterns and relationships within large datasets that might not be 
immediately apparent through deterministic calculations. 
Furthermore, these models can adapt to changes in water quality 
parameters over time, offering a dynamic and robust tool for water 
quality assessment that deterministic methods may not provide. 
This adaptability is crucial in the face of varying environmental 
factors and pollution sources, ensuring accurate and timely 
assessments that support effective water management strategies. 
The remainder of this article is as follows. Section 2 explores the 
related works of the study and a comprehensive review of various 
machine learning algorithms applications in water quality 
assessments, including a tabular representation of their recent 
advancements. Section 3 discussed the step-by-step procedure of 
the study. Section 4 outlines the result and discussion part. This 
section also suggested the most reliable model for predictions in our 
data set analyses. The conclusion part is presented in Section 5. 
 
2 Background Study 
2.1 Machine Learning Algorithms 
Machine learning algorithms are a set of statistical models and 
techniques that enable computers to learn and make predictions or 
decisions without being explicitly programmed. These algorithms 
learn from data and extract patterns and features to improve their 
performance. They have become widely used in various 
applications, such as spam mail classification, image recognition, 
personalized product recommendations, and natural language 
processing (Ling, 2023). Machine learning is a subfield of artificial 
intelligence (AI) and has a subset called deep learning, which uses 
deep neural networks to learn from complex data. The key 
characteristics of machine learning algorithms include their ability 
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to learn from data, make predictions, handle various types of input 
data, improve through experience and perform  
tasks without human intervention (Zhai et al., 2023). Machine 
learning algorithms work by training data and developing rules 
based on that learning. These algorithms then evaluate test data to 
generate results without human intervention. The process involves 
using various types of input data, such as images, texts, and 
numbers, to create logical patterns.  
Machine learning algorithms can be categorized into several types. 
Some commonly used machine learning algorithms include 
support vector machines, logistic regression, decision trees, 
gradient boosting, random forest and XGBoost (Ren & Du, 2023).  
2.2 Water Quality Index (WQI) 
A Water Quality Index (WQI) is essential for assessing overall water 
quality through a single numerical value, reflecting suitability for 
various uses. The urgency of accurate water assessments is 
highlighted by the significant marine pollution challenges faced by 
Bangladesh due to plastic waste (Mim et al., n.d.). WQI is helpful in 
selecting appropriate treatment techniques and communicating 
water quality information to the public and decision-makers. 
Different methods and indices have been developed globally, such 
as the National Sanitation Foundation’s Water Quality Index 
(NSFWQI), Weighted Arithmetic Water Quality Index (WAWQI), 
and the British Colombia Water Quality Index (BCWQI)  (Mogane 
et al., 2023). These traditional WQI methods, which rely on grab 
sampling of physicochemical parameters, can be lengthy and 
expensive. An enhanced WQI method based on a semi-supervised 
machine learning technique has been developed to overcome these 
limitations. This method incorporates a parameter selection step, 
sub-index calculation, weight assignment, aggregation of sub-
indices, and classification (M. Ahmed et al., 2022). By using 
machine learning algorithms and considering a wide range of 
parameters, this approach removes uncertainties and improves the 
accuracy and sensitivity of WQI models (Mueller et al., 2021). 
2.3 WQI Detection Using Machine Learning 
Machine learning algorithms have been used to predict Water 
Quality Index (WQI) values in various studies. Bui Quoc Lap et al. 
(2023) applied feature selection techniques and found that the 
Random Forest model provided the best accuracy in predicting 
WQI values from the An Kim Hai system in Vietnam. Md. Galal 
Uddin et al. (2022) compared eight commonly used algorithms and 
found that Decision Tree, Extra Tree, Extreme Gradient Boosting, 
and Random Forest models outperformed others in predicting 
coastal WQIs in Cork Harbour. Ahmed et al. (2019) investigated 
the application of machine learning (ML) algorithms for estimating 
water quality index (WQI) and water quality class (WQC) with a 
minimal set of input parameters. The proposed method has been 
developed and tested specifically  

for the stream network of the Rawal watershed, and its applicability 
to other water bodies may need further validation and 
customization. Wang et al. (2021) proposed a novel approach using 
a model stacking method to enhance the reliability of beach water 
quality predictions, which combines the predictions of five base 
models (MLR, PLS, SPLS, RF, and BN). The study addressed 
variability challenges across different beaches and consecutive 
years, achieving robust, cross-validated predictions for beach 
microbial water quality. Yilma et al. (2018) utilized an artificial 
neural network (ANN) to predict the water quality index (WQI) of 
the Little Akaki River, demonstrating promising performance 
despite generally poor water quality. The ANN model showed 
promising performance in predicting the CCME-WQI values, 
achieving an R2 value of 0.93. Sillberg et al. (2021) applied the 
Attribute-Realization (AR) technique with Support Vector 
Machine (SVM) for water quality classification, identifying key 
attributes and showcasing high accuracy. However, the study 
demonstrated that linear regression outperformed other 
mathematical functions for classifying river water data, providing a 
robust foundation for accurate classification. The improvement of 
Water Quality Index (WQI) prediction accuracy using innovative 
hybrid machine-learning algorithms was accomplished by Bui et al. 
(2020). Which emphasizes the superior performance of the BA-RT 
algorithm. Azad et al. (2018) optimized the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) with various intelligence algorithms for 
accurate water quality parameter predictions. Zhang et al. (2019) 
developed a hybrid statistical model (HANN) combining ANN and 
genetic algorithm for predicting drinking water treatment plant 
performance. By utilizing this hybrid model, the researchers sought 
to provide valuable insights for decision-makers and DWTP 
managers, allowing them to plan proactively in response to 
regulatory changes, source water quality fluctuations, and market 
demand shifts. Khoi et al. (2022) assessed the effectiveness of ML 
models, highlighting XGBoost's precision in predicting WQI for the 
La Buong River. Li et al. (2021) developed a robust ML approach 
using Sentinel-2 MSI data to predict the Water Quality Index 
(WQI) in the Ebinur Lake Basin, emphasizing spectral modeling 
indexes' correlation with water quality parameters. The findings are 
specific to the Ebinur Lake Basin, suggesting potential benefits of 
higher-resolution data in future studies. 
Overall, all the authors discussed and proposed the various uses of 
machine learning for WQI prediction, and classification. Therefore, 
an updated machine learning model will be beneficiary in the 
context of WQI prediction in the current world. Table 1 showcases 
some of the relevant research on WQI prediction and classification. 
After going through above-mentioned research, we have found that 
there is a lack of implementing the Explainable-AI(XAI) model for 
WQI prediction and classification worldwide. Explainable AI (XAI) 
is an emerging area of research in the field of Artificial Intelligence 
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(AI) that focuses on making AI models interpreTable and 
understandable by humans. XAI techniques aim to provide 
explanations for how AI systems arrive at their decisions and 
answers "wh" questions. This is crucial for critical applications, such 
as prediction, classification, and detection of public health related 
data, where trust and transparency are essential. So, in this study the 
author aimed to implement the XAI model into water quality 
assessment to get several advantages, including real-time 
monitoring, accuracy in water quality assessing, early detection of 
water quality deterioration, and informed decision-making for 
resource management.  
 
3 Methodology 
To develop a robust and explainable predictive model, the authors 
followed a step-by-step process, beginning with the compilation of 
water quality data from water bodies worldwide, as shown in Figure 
1. Subsequently, only the selected parameters were extracted from 
the datasets to calculate the actual WQI using the WAWQI method 
to complete the data set. Afterward, the preparation of the data set 
for analysis is begun. This involves cleaning, which may include 
handling missing values and outliers, and pre-processing, such as 
normalization or transformation, to make the data suiTable for 
modelling. 
Prior to modeling, an Exploratory Data Analysis (EDA) was 
conducted to comprehend the characteristics of the data. This 
process entailed visualizing distributions, identifying patterns, and 
exploring potential correlations among variables. Then, the data set 
is divided into three parts: 70% designated for training purposes, 
15% allocated for validation, and the remaining 15% reserved for 
test sets (Hou et al., 2023). This split is crucial for unbiased model 
evaluation, allowing the models to be trained and the tuning of 
hyperparameters without over-fitting. Afterward, different types of 
regression models on the validation set were assessed to assess the 
generalization ability of each model without touching the test set. 
The grid search technique can tune the models' hyperparameters to 
improve their performance if necessary. The selected models are 
then trained on the training set, utilizing the entire range of data 
available for learning. The selected regression models were used, 
and each model was evaluated based on performance metrics 
relevant to the project's objectives. Then, the best-performing 
model has been chosen based on the model's performance on the 
validation set. Then, the preferred model is finally evaluated on the 
test set. A rigorous assessment is done on its performance. The 
authors also generated insights to determine which features most 
significantly influence the model's predictions. It also helps in 
understanding and interpreting the model better. The assessment 
includes a deep dive into the relative importance of each feature. 
The actionable insights of the model have also been provided. Then, 
a feature importance plot was generated for individual predictions 

to understand the model's decision-making process at a granular 
level. 
Finally, a comprehensive assessment of the model was conducted, 
ensuring that it met the desired criteria and objectives. Throughout 
this process, authors focus on algorithmic bias and data quality, 
ensuring the model's predictions are reliable and applicable to real-
world scenarios. That is why some outliers, reflected on the test set, 
are not removed. The outlined workflow facilitates the development 
of a model that not only performs exceptionally well statistically but 
also yields actionable insights to empower explainable and 
interpreTable data-driven decision-making. 
3.1 Data obtaining process 
Potential of Hydrogen (pH), Total Dissolved Solids (TDS), 
Chloride (Cl-), sulphate (SO4

2-), Sodium (Na+), Potassium (K+), 
Calcium (Ca+2), Magnesium (Mg+2), and Total Hardness (T.A) are 
some of the parameters that were used in this study. Table 2 shows 
the feature description. A total of 171 monitoring locations' water 
quality parameters were considered for this study. The selection of 
water quality parameters for this study was based on the availability 
of data variables in the water quality assessment research conducted 
between 2020 and 2022. 
3.2 Water Quality Assessment 
3.2.1 Water Quality Index Calculation 
Water quality indexes are calculated using the Weighted Arithmetic 
Index Method (Islam, 2024). The steps of this method are given 
below: 
Step: 1 Use this formula to calculate the unit weight (Wn) values for 
each parameter 
 

𝑊𝑊𝑊𝑊 =  
𝑘𝑘
𝑆𝑆𝑊𝑊

 

 
Where, 
 

𝐾𝐾 =  
1

1
𝑆𝑆1� + 1

𝑆𝑆2� + 1
𝑆𝑆3� … … … … … + 1

𝑆𝑆𝑊𝑊�
=  

1
∑1

𝑆𝑆𝑊𝑊�
 

 
Sn = Desirable standard value of the 𝑊𝑊𝑡𝑡ℎ  parameters 
Wn = 1(unity) when all selected parameter unit factors are added 
together 
Step: 2 Determine the sub index (Qn) by using the following 
equation: 

𝑄𝑄𝑊𝑊 =  
[(𝑉𝑉𝑛𝑛 − 𝑉𝑉0)]
[(𝑆𝑆𝑛𝑛 − 𝑉𝑉0)]

∗ 100 

 
Where, 
𝑉𝑉𝑛𝑛 = mean concentration of the 𝑊𝑊𝑡𝑡ℎ  parameters 
Sn = Desirable standard value of the 𝑊𝑊𝑡𝑡ℎ  parameters 
𝑉𝑉0 = Real values of parameters in clean water (generally 𝑉𝑉0 = 0, for 
most parameters except for pH=7) 
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𝑄𝑄𝑝𝑝𝑝𝑝 =  
[(𝑉𝑉𝑝𝑝𝑝𝑝 − 7)]
[(8.5 − 7)]

∗ 100 

 
 
Step: 3 combining step 1 & step 2, WQI calculate as follows 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑊𝑊𝑄𝑄𝑊𝑊 =  
∑𝑊𝑊𝑊𝑊𝑄𝑄𝑊𝑊
∑𝑊𝑊𝑊𝑊

 

 
 
3.2.2 Rationale Behind Employing Machine Learning Models 
Within the domain of Water Quality Index (WQI) assessment, 
machine learning presents compelling advantages that complement 
established WQI equations, even when utilizing laboratory data. 
The urgency of adapting such advanced methodologies is 
underscored by the recurring natural disasters in Bangladesh, 
where floods significantly impact water quality and public health 
(Islam et al., 2024). Machine learning algorithms with explain-
ability possess the remarkable capability to adapt to the inherent 
complexities of individual water bodies. By leveraging historical 
data from specific sources like lakes, rivers, or groundwater 
reserves, these algorithms can incorporate factors such as local 
pollutants and seasonal variations. This tailored approach can lead 
to the generation of a more accurate WQI that is highly specific to 
the water body under study. Furthermore, machine learning offers 
the potential to identify novel contaminants. By analyzing data for 
unexpected patterns, these algorithms can signal the presence of 
emerging contaminants and assess impacts exacerbated by climate 
change, such as those observed in the coastal regions of Bangladesh, 
which might not yet be encompassed by the standard WQI equation 
(Rahman et al., 2024). This ability to provide early warnings of 
potential water quality issues is a significant strength of machine 
learning in this context. Additionally, machine learning can 
optimize the weightings traditionally assigned to various water 
quality parameters within WQI equations. Through analysis of 
historical data, machine learning can determine if these weightings 
require adjustments for specific locations or situations, leading to a 
more nuanced understanding of water quality. Finally, machine 
learning models can be integrated with sensor networks that 
continuously monitor water quality parameters, enabling real-time 
assessment and facilitating the swifter detection of changes in water 
quality. It is crucial to recognize that machine learning, in the 
context of WQI, serves as a refinement tool rather than a complete 
replacement for existing equations. The WQI equation provides a 
foundational framework, and machine learning strengthens it by 
enabling site-specific adaptations and offering the potential for 
earlier problem identification.  
3.3 WQI Classification and Potential Uses 

Table 3 shows that the WQI values are divided into five distinct 
categories, each of which corresponds to a specific water quality 
status and potential uses. This classification system enables a rapid 
assessment of water quality, making it a valuable tool for decision-
making and management, particularly in situations where quick 
predictions of water quality are essential for various applications 
like reducing the health risk (Abdullah et al., 2024).  
3.4 Data preparation for modelling 
In order to generate the datasets for modelling, the Water Quality 
Index-WQI of data is considered as dependent variable (Y) whereas 
other parameters namely Ph, Cl-, SO4

2-, Na+, K+, Ca+2, Mg+2, Total 
hardness & Total dissolved solids are considered as independent 
variables X1, X2, X3, X4, X5, X6, X7, X8, and X9, respectively as 
shown in Table 4. Data presentation is shown in the form of Table 
3. Data of the variables were divided into three parts, such as 
training data set (70%), test datasets (15%) and validating data set 
(15%). Different dividing strategies of data were carried out to get 
the best fit for each model. Training data set was then used to learn 
models whereas validating data set was used to test the models. 
3.5 Exploratory data analysis 
Exploratory data analysis (EDA) is the process of manipulating data 
to learn about general patterns and identify specific occurrences 
that deviate from those patterns (Albert & Rizzo, 2012). EDA 
consists of statistical models and graphs, incorporating domain 
knowledge to find information and generate ideas. In this research 
the EDA report is subdivided into Distribution Analysis, 
Correlation Analysis, Anomaly Analysis, Pairwise Relationship 
Analysis. 
3.5.1 Distribution Analysis 
Distribution analysis involves examining the spatial distribution of 
data and detecting patterns or clusters within the data. It is a 
powerful tool for identifying spatial outliers, detecting spatial 
association, and gaining profound insights into the water quality 
parameters used in this study. For instance, Figure 2 shows that, the 
pH distribution appears to closely resemble a normal distribution, 
albeit with a slight inclination towards higher pH levels. On the 
other hand, the  
Total Dissolved Solids (TDS) distribution is right-skewed, 
indicating the presence of samples with exceptionally high TDS 
levels. The distributions of chloride (Cl-), sulfate (SO4

2-), sodium 
(Na+), potassium (K+), calcium (Ca+2), and magnesium (Mg+2) all 
exhibit a right-skewed pattern, suggesting that most samples cluster 
within a specific range while outliers with notably high values exist. 
Total Hardness, interestingly, presents a bimodal distribution, 
implying the possible existence of two distinct groups within the 
data, each with different levels of water hardness. Lastly, the Water 
Quality Index (WQI), our target variable, also follows a right-
skewed distribution, providing important insights into its 
variability within the data set.  
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Table 1. Research findings based WQI predictive models and its accuracy. 

Task Method Model Accuracy Reference 

Prediction Machine Learning Random Tree (RT) 94.10% Bui Quoc Lap Et Al. 
(2023) 

Regression, 
Classification 

Machine Learning Gradient Boosting 
(GB) 

74.85% Ahmed Et Al. (2019) 

Prediction Machine Learning Random Forest (RF) 90.4% Wang Et Al. (2021) 

Prediction Machine Learning Artificial Neural 
Network (ANN) 

93.0% Yilma Et Al. (2018) 

Classification Machine Learning Support Vector 
Machine (SVM) 

86.0%-95.0% Sillberg Et Al. (2021) 

Prediction Machine Learning Adaptive Neuro-
Fuzzy Inference 
System (ANFIS) 

95.0% Azad Et Al. (2018) 

 
Table 2. Attributes name with its description and standard value suggested by authorities 

Attributes Name Description Standards of Parameters 

pH A measure of the acidity or alkalinity of water. 6.5-8.5a 

Cl- The concentration of chloride ions, which can indicate 
salinity or contamination. 

200-250 mg/La 

SO4
2- The concentration of sulfate ions, which can indicate 

the presence of sulfates in water. 
200-250 mg/La 

Na+ The concentration of sodium ions, which can be 
relevant for assessing water salinity. 

100-200 mg/La 

K+ The concentration of potassium ions, which may be 
indicative of certain water quality characteristics. 

12 mg/Lb 

Ca+2 The concentration of calcium ions, which can influence 
water hardness and quality. 

0-100 mg/Lb 

Mg+2 The concentration of magnesium ions, which can also 
affect water hardness. 

20 mg/Lb 

T.A The overall capacity of water to neutralize acids, 
indicating its buffering capacity. 

100-200 mg/Lc 

TDS The total concentration of dissolved inorganic and 
organic substances in water. 

1000 mg/Lc 

aWorld Health Organization 
b Ministry of Environment- Al Najaf Environment Directorate 

c Department of Environment, Bangladesh 
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Table 3. WQI range, condition, and potential uses of the water sample 

WQI Water quality status (WQS) potential uses 

0–25 Excellent Human consumption, agriculture 
and industrial 

26–50 Good Human consumption, agriculture 
and industrial 

51–75 Poor Agriculture and industrial 

76–100 Very Poor Agriculture 

>100 Not suitable for human 
consumption 
and fish culture 

Needs to be treated properly before 
use 

Source: Brown et al. (1972) 
 
Table 4. Data Presentation 

No.  X1  X2  X3  X4  X5  X6  X7  X8  X9  Y  

1  8.44 60 41 67.6 3.36 41 20 180 399 74.22 

2  8.29 120 80 97.3 29 42.71 25.65 200 572.67 138.40 

3  8.56 110 78 102 17.2 24 33.87 200 556 124.4 

4  8.33 110 86 97.8 21 16.07 25 140 487.19 117.11 

… … … … … … … … … … … 

… … … … … … … … … … … 

… … … … … … … … … … … 

168 7.75 175.35 2977.5 122.65 7.25 168.4 43.5 601 1106.5 131.42 

169 7.85 239 615.8 183.8 11.25 174.8 48 634 1382.5 130.04 

170 7.62 147.774 613.417 105.78 6.488 149.317 44 534.278 984.29 102.52 

171 7.6 146.44 321.05 120.15 5.05 112.8 52.68 498 894 99.86 
 
Table 5. Performance Value of All Machine Learning Models 

Model MSE MAE RMSE R2 

Linear Regression 403.25 15.23 20.08 0.58 
Random Forest 35.98 4.80 6.00 0.96 
KNN 662.72 17.57 25.74 0.31 
GB 24.26 3.20 4.93 0.97 
XGB 56.32 4.52 24.39 0.94 
LGBM 132.48 8.29 11.51 0.86 
SVM 206.47 6.93 14.37 0.78 
Adaboost 40.98 5.30 6.40 0.96 
Catboost 82.10 4.42 9.06 0.91 
Ann 623.24 18.41 24.96 0.35 
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Table 6: Performance Value of Gradient Boosting (Fine Tuned) 
Dataset Type MSE MAE RMSE R2 

Validation Set 14.58 2.64 3.81 0.98 
Test Set 162.22 5.75 12.93 0.96 

 

 
Figure 1. Methodology 
 
 

 
Figure 2. Distribution analysis graphs of the variables 
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Figure 3. Correlation matrix of variables 
 

 
Figure 4.  Anomaly Analysis Graphs of variables 
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Figure 5. Pairwise Relationship Analysis Graphs of variables 
 

 
Figure 7.  Prediction Error Plot 
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Figure 6. Partial Dependence Plot of GB 
 

 
Figure 8. SHAP Summary Plot (Global Importance) 
 

 
Figure 9. SHAP Summary Plot (Local Importance) 
 
 

Unc
orr

ec
ted

 Proo
f



 APPLIED AGRICULTURE SCIENCES                                                                                        RESEARCH 
 

https://doi.org/10.25163/agriculture.2110031                                                              1–14 | APPLIED AGRICULTURE SCIENCES| Published online October 07, 2024 
 

3.5.2 Correlation Analysis 
In Figure 3, strong positive correlations were observed between 
various water quality parameters. TDS and Total Hardness 
exhibited a very strong positive correlation (0.83), while TDS and 
CI displayed a strong positive correlation (0.91). Variables such as 
TDS (0.56) and Total Hardness (0.49) show a moderate positive 
correlation with the target variable WQI. This suggests that they 
have important features for predicting WQI. 
3.5.3 Anomaly Analysis 
In the context of anomaly analysis, the examination of the boxplots 
in Figure 4 discloses the existence of outliers within the data set. 
Specifically, TDS, Cl, SO4, Na, K, Ca, and Mg exhibit data points 
that extend beyond the boxplot whiskers, signifying potential 
outliers. Total Hardness also displays a few outliers, while the 
variable WQI indicates the presence of outliers through extreme 
values in the higher range. 
3.5.4 Pairwise Relationship Analysis 
The Pairwise Relationship Analysis of the selected parameters in 
relation to the target variable WQI is shown in Figure 5. It finds that 
potassium (K) has a somewhat linear relationship with water 
quality index (WQI), while the relationship between magnesium 
(Mg) and WQI is less clear. pH levels do not show a strong linear 
relationship with WQI, but there might be a nonlinear relationship. 
The relationship between sodium (Na) and WQI doesn't appear to 
be strong, but there's a noticeable pattern. 
 
4 Result and Discussion 
Table 5 represents the Mean Squared Error (MSE), The Mean 
Absolute Error (MAE), The Root Mean Squared Error (RMSE), R-
squared (R2) values of all the machine learning models in the 
validation datasets. Based on these values it can be said that the 
Gradient Boosting model consistently excels across all metrics, 
suggesting it is the most reliable for predictions in our dataset. The 
Random Forest and XGB models also show strong performance but 
with some trade-offs in specific metrics. On  
the other hand, the Linear Regression and KNN models might need 
reconsideration or parameter tuning, as their performance metrics 
indicate a weaker fit and predictive accuracy. After the evaluation 
of the specific model for these datasets the model is fine tuned for 
more accurate results. 
performance value of the Fine tuned Gradient Boosting model in 
the validation set and test set is given on Table 6. 
4.1 Interpretation of the Model's Performance and Behaviour 
4.1.1 Partial Dependence Plot 
Partial Dependence Plot (PDP) is a tool that is used in machine 
learning to illustrate the relationship between selected features and 
the target variable. It also helps in visualizing and interpreting the 
marginal effect of a feature on model predictions, revealing 
patterns, such as linear or non-linear relationships. Figure 6 

represents Partial Dependence Plots (PDPs) of Gradient Boosting 
model. This Figure shows the individual plots that indicates the 
target variable’s(WQI) relationship with the respective features. 
From those plots, it can easily be understood that K, Mg, and pH 
have a linear relationship with WQI and the rest of the plots have 
flat lines indicating a non-linear relationship.  
4.1.2 Prediction Error Plot 
In regression analysis the Prediction error plots or residual plots 
compare the actual values with the predicted values which reveals 
the model's accuracy and the distribution of errors. Figure 7 
represents the prediction error plots of Gradient Boosting model 
which shows that the data points close to the line of perfect 
prediction and residuals are randomly distributed around the zero 
line, indicating accurate and unbiased predictions. Additionally, 
these plots help to identify patterns, suggest model limitations, 
highlight outliers, and provide a visual tool to evaluate and improve 
model performance. 
4.1.3 Shapley Additive Explanations Summary Plot 
Figure 8 & 9 exhibits SHAP (SHapley Additive exPlanations) 
summary plots for global importance & local importance, 
respectively. It is an insightful visualization tool in machine 
learning, offering a comprehensive view of how different features 
influence a model's predictions across all predictions.  
4.1.3.1 SHAP Summary Plot (Global Importance) 
In the global importance plot, it ranks features by their importance, 
depicted at the top of the plot, and uses colour coding to indicate 
the direction of their impact which shows whether high or low 
values of a feature increase or decrease the prediction. Additionally, 
each dot on the plot represents an individual data point, 
demonstrating the varied effects of feature values across the dataset. 
4.1.3.2 SHAP Summary Plot (Local Importance) 
It is also known as waterfall plots. In these plots offer an in-depth 
look at how a model arrives at a specific prediction (f(x)=89.306) 
for an individual observation. The plot begins with a base value, 
typically the average prediction (E[f(x)] = 110.992) across the 
dataset, which serves as a starting point. Each feature's contribution 
is then represented as individual bars, with their length and 
direction indicating the magnitude and direction of their impact on 
the prediction. For example, to predict the value 89.306, the K 
(Potassium) impacted negatively and the Cl (Clorine) impacted 
positively. The layout in the Figure allows a clear understanding of 
both the positive and negative influences of each feature. 
 
5. Conclusion 
This research aimed to determine the robust algorithm for 
predicting the water quality index (WQI) accurately in terms of 
GNB) were tested and validated for predicting WQI. Predictive 
models were validated using a number of validators, such as RMSE, 
MSE, MAE, RMSE and R2. Explainable AI (XAI) is implemented in 
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model interpretability and understandability. To achieve this goal, 
ten ML algorithms (Linear Regression, Random Forest, KNN, GB, 
XGB, LGBM, SVM, AdaBoost, CatBoost, ANN SVM, ExT, LR, and 
this study for model transparency. The most well-known dataset 
variables, such as Potential of Hydrogen (pH), Total Dissolved 
Solids (TDS), Chloride (Cl-), sulphate (SO4

-2), Sodium (Na+), 
Potassium (K+), Calcium (Ca+2), Magnesium (Mg+2), and Total 
Hardness (T.A) were obtained in this study. However, it can be 
concluded that the Gradient Boosting (GB) regression model is 
effective and robust for predicting the WQI. Additionally, the fine-
tuned GB model showcased its ability in the validation set with 
remarkably low MSE, MAE, and RMSE scores alongside a high R2 
value, pointing to its precise predictive capabilities. The findings of 
this research would also have been much more useful in predicting 
WQIs at each monitoring site more accurately by the power of 
Explainable AI. The findings revealed that the Gradient Boosting 
model performed well in forecasting the water quality index; 
however, the greatest performance was linked with the higher 
accuracy (R2 value). Further studies should be carried out in order 
to validate the other algorithms in terms of predicting WQIs using 
temporal variability of data attributes. 
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