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Abstract

Metal ions are essential for metalloproteins to perform

their catalytic or structural functions. To understand their

role in protein function, it is important to identify metal

ion-binding sites. Because experimental identification is

labor-intensive and time-consuming, computational

methods are expected to be used in the prediction of

protein–metal ion-binding sites. A range of

computational methods have been proposed to predict

metal ion-binding sites from protein sequences. In this

study, we implemented two methods of predicting metal

ion-binding sites for Ca2+, Co2+, Cu2+, Cu+, Fe3+, Fe2+, Hg2+,

Mg2+, Mn2+, Ni2+, and Zn2+ from amino acid sequences. One

is a homology-based method, and the other is a machine-

learning method. The homology-based method predicts

the binding sites from homologous sequences obtained

by a protein–protein basic local alignment search tool

(BLASTP) search. The machine-learning method uses a

support vector machine with three protein sequence

features. Our results showed that the the homology-

based method achieved an accuracy of 0.9905 and a

specificity of 0.9978, while the machine-learning method

showed balanced performance with regard to accuracy,

sensitivity, and specificity. Especially, the sensitivity of

the machine-learning method was 0.8239, and many

metal ion-binding sites were predicted only by the

machine-learning method.
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Introduction

Metalloproteins are proteins that can bind one or more metal ions,
which are essential for the proteins to perform their catalytic or
structural functions (Degtyarenko et al., 2000). Approximately
one-third of the structures in the Protein Data Bank (PDB)
(Berman et al., 2000) contain at least one metal ion. Metal ions are
important for the function of proteins and typically have catalytic,
transfer, regulatory, structure, recognition, transcription, and
transducer roles. The presence of metal ions in metalloproteins is
not only helpful for maintaining spatial stability, but also
important for executing the physiological functions of the proteins
(Holm et al., 1996, Matthews et al., 2008). With the rapid
expansion of protein databases, it has become important to
identify metal ion-binding sites in metalloproteins in order to
understand their role in protein function. Metal ion-binding
proteins are experimentally identified and characterized using
nuclear magnetic resonance spectroscopy (Jensen et al., 2005; Zhu
et al., 2004), gel electrophoresis (Greenough et al., 2015), metal-
affinity column chromatography (Herald et al., 2003),
electrophoretic mobility shift assay (EMSA) (Hellman et al., 2007),
absorbance spectroscopy (Korshin et al., 2009), and mass
spectrometry (Binet et al., 2003). However, most of these methods
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require complex steps and specialized equipment, making them
labor-intensive and time-consuming. Hence, prediction of metal
ion-binding sites using bioinformatics methods will not only be
useful for annotation of experimentally uncharacterized proteins,
but also will have a significant role in the prediction of protein
structure, function, and genome annotation.

Computational methods have been used to predict protein-
–metal ion-binding sites. Lin et al. 2005 used a neural networks
method to predict metal-binding sites in proteins. The target metal
ions of Lin’s work are Ca2+, Mg2+, K+, and Na+. Kumar, 2017 used
the random forest algorithm to predict protein–metal ion–binding
sites for multiple metal ions: Ca2+, Co2+, Cu2+, Fe3+, Mg2+, Mn2+,
Ni2+, and Zn2+. We compared our method with Kumar’s. Many
other studies have also predicted specific metal ion–binding sites.
For example, Zn2+–binding site predictors (Passerini et al., 2007;
Srivastava et al., 2018) used the support vector machine and
sequence profile information. Metal ion–binding sites have also be
predicted using 3D protein structures (Chen et al., 2013; Lu et al.,
2012; Yan et al., 2019; Schymkowitz et al., 2005; Goyal et al., 2008).
For example, Chen et al. 2013, searched for a triad of amino acids
having ligand atoms within specific distances to predict protein–
Zn2+–binding sites while Lu et al. 2012 used the fragments
transformation method based on the binding site templates. The
approach using 3D protein structures can improve prediction
performance; however, 3D protein structures are not always
available. Predicting metal ion–binding sites only from sequence
information is widely applied. Studies have also identified metal
ion–binding histidine and cysteine residues in a protein (Passerini
et al., 2006; Haberal et al., 2019). However, since these residues are
important in metal ion binding, this approach is different from
our study.

In this study, we implemented and compared two methods
to predict metal ion-binding sites for Ca2+, Co2+, Cu2+, Cu+, Fe3+,
Fe2+, Hg2+, Mg2+, Mn2+, Ni2+, and Zn2+ from amino acid sequences:
a homology-based method and a machine-learning method.
Homology search is a popular method in which multiple
alignment of the homologous sequences enables the prediction of
metal ion-binding sites. We implemented the homology-based
method, which performs this prediction procedure automatically.
In the machine-learning method, a support vector machine was
employed, and three protein sequence features were selected as its
input. To the best of our knowledge, these two methods have not
been directly compared using the same dataset. We therefore
compared and discussed the results of prediction for each metal
ion.

Materials and methods

We developed two kinds of method to predict metal-binding sites
from amino acid sequences only: a homology-based method and a

machine-learning method (Figure 1). In the homology-based
method, BLASTP search (Altschul et al., 1997) was used to identify
sequence homology. In the machine-learning method, a support
vector machine (SVM) (Boser et al., 1992 was employed with the
sequence features amino acid type, position specific scoring matrix
(PSSM), and 13 groups of amino acids based on physicochemical
properties described below. Basic flows of the homology-based
method and the machine-learning method are shown in orange
and blue, respectively.
Dataset

All protein structures in PDB files and mmCIF files and
sequences in FASTA files were extracted from the website of the
PDB database (Berman et al., 2000) using the following criteria:
(1) the protein complex contained at least one metal ion; (2) the x-
ray protein structure had a resolution less than or equal to 2.5 Å;
and (3) the chain length was greater than 50 residues. A total of
11,903 protein structures and 33,271 chains were collected. For the
homology-based method, these chains were used as the positive
dataset for BLASTP search. For the machine-learning method,
these chains were clustered by CD-HIT (Fu et al., 2012) to remove
redundancy for sequence identity thresholds of 30%. Table 1 lists
the statistics for each kind of metal ion-binding protein.
Homology-based method

In the homology-based method, we used BLASTP to
obtain the homologous sequences of the query sequence in the
positive dataset for this method. The homologous sequences were
selected based on the E-value; sequences with E-values lower than
a threshold value are defined as homologous sequences.

For instance, when 1AH7:A (A chain of PDB structure
1AH7) was input as a query sequence, assuming the binding sites
of this sequence were unknown, three sequences of known
structures, 1KHO:A, 2WXU:A, and 1OLP:A, were obtained as the
homologous sequences. If an aligned residue in one of the
homologous sequences was a metal-binding residue, this residue
in the query sequence was predicted as a metal-binding site; if not,
this residue was predicted as a nonbinding site. Figure 2 shows an
example of this prediction. As shown, 2WXU:A lacks two Zn2+,
and the corresponding residues are not defined as binding sites.
However, residues of the target aligned to these positions are
predicted as binding residues because the other homologs contain
Zn2+-binding residues. Figure 3 shows the superposition of the
target and homolog structures. In this example, Zn2+-binding sites
(pockets) of the homologs have similar structures and are well
aligned.
Machine-learning methods and feature extraction

We used SVM as a machine-learning algorithm. SVM
shows good performance and generalization abilities for
classification and regression analysis. The radial basis function
(RBF) kernel was adopted as a kernel function since it seemed
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appropriate to capture the nonlinearity of multiple binding site
properties. We used scikit learn (Pedregosa et al., 2011) to
implement the SVM. SVM requires a fixed length of the feature
vector for training and testing. We extracted three features to train
SVM: amino acid type, position specific scoring matrix (PSSM),
and side chain type.
Amino acid type

Each amino acid residue was encoded as a vector of 20
elements; an element that corresponds to an amino acid type is
one, and the others are zero. The all zero vector represents a spacer
for N- and C-terminals of the sequences. Twenty types of amino
acids are decoded into a binary pattern.
PSSM

PSSM is the amino acid substitution score for each position
in a protein multiple sequence alignment. The PSSMs for each
sequence in the dataset were obtained by the PSI-BLAST (Cooper
et al., 2004) program with three iterations of search against the
nonredundant data in the National Center for Biotechnology
Information (NCBI). For each sequence, PSSM was represented by
an matrix, where is the length of the amino acid
sequence. PSSM scores are generally shown as positive or negative
integers.
Side chain type

Amino acids are organic compounds containing amine (-
NH2) and carboxyl (-COOH) functional groups, along with a side
chain (R group) specific to each amino acid.

Amino acids can be classified according to the
physicochemical properties of their side chains. In this study, we
implemented the grouping scheme proposed in (Cooper et al.,
2004); according to side chain polarity, amino acids are divided
into four groups; according to side chain class, amino acids are
divided into nine groups. The definitions of these features are
described in Supplementary material A. Using this feature, each
residue was represented by a vector of 13 elements.
Measurement of performance

In the machine-learning method, we employed five-fold
cross-validation. The final performance at each parameter was
obtained by averaging the performance of all five test sets. The
performance of the SVM model at a particular training parameter
was assessed using threshold-dependent parameters, namely
accuracy, sensitivity, specificity, precision, and Matthew’s
correlation coefficient (MCC).

These parameters were calculated using the true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN), where TP is correctly predicted metal ion-binding amino
acids, TN is correctly predicted metal ion-nonbinding amino
acids, FP is wrongly predicted metal ion-binding amino acids, and
FN is wrongly predicted metal ion-nonbinding amino acids.

Accuracy is the ratio of the correct predictions (TP + TN)
to all predictions, and it is calculated as follows:
Accuracy = .

Sensitivity is the ratio of correctly predicted binding
residues (TP) to actual binding residues (TP + FN), and it is
calculated as follows:
Sensitivity = .

Specificity is the ratio of correctly predicted nonbinding
residues to actual nonbinding residues (TN + FP), and it is
calculated as follows:
Specificity = .

Precision is the ratio of correctly predicted binding
residues (TP) to correctly predicted binding and nonbinding
residues (TP + FP), and it is calculated as follows:
Precision = .

MCC is a balanced measurement that is used to assess the
effectiveness of the performance, and it was calculated as follows:
MCC = .

Results and discussion

Amino acid frequencies of metal ion-binding sites
We calculated the frequencies of 20 types of amino acid

residues in the metal ion-binding sites. The frequencies of each
amino acid in the binding sites of each metal ion are represented
in Supplementary material B.

Metal ions are commonly coordinated by nitrogen,
oxygen, or sulfur centers belonging to side chains on the amino
acid residues of the protein, where metal ions provide empty orbits
and amino acids provide electrons. The imidazole substituents of
histidine residues, the thiolate substituents of cysteine residues,
and the carboxylate groups of aspartic acid and glutamic acid can
provide electrons as donor groups. This is consistent with the
results of the present study, which showed that metal ions
preferentially bind certain residues, namely cysteine, histidine,
aspartic acid, and glutamic acid. As for Ca2+ and Mg2+, cysteine
and histidine do not form cross-links with amino acid residues for
constructing a specific structure; therefore, the frequencies of
cysteine and histidine are low compared to other ions. Negatively
charged residues (aspartic acid and glutamic acid) have high
frequencies because of electrostatic interaction with Ca2+ and Mg2+.
These ions also bind to oxygen atoms of the backbone. The
imidazole substituents of histidine residues, the thiolate
substituents of cysteine residues, and the carboxylate groups of
aspartic acid and glutamic acid can provide electrons as donor
groups, and metal ions can provide empty orbits. Nonpolar
residues, such as leucine, isoleucine, and valine, as well as less
polar amino acids, such as proline and threonine, show no
preference for metal coordination. However, they show certain
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Table 1 | Numbers of proteins and chains in the positive dataset. The metal ion–binding site was defined as residues within 3.5 Å
of a metal ion center. These residues were obtained by analyzing PDB structures.

Metal ion Number of proteins Number of chains Number of nonredundant chains

Ca2+ 2,626 6,861 1,246

Co2+ 260 603 181

Cu2+ 268 644 131

Cu+ 52 111 33

Fe3+ 413 1,167 215

Fe2+ 167 545 97

Hg2+ 152 318 119

Mg2+ 3,782 11,600 1,423

Mn2+ 883 2,750 437

Ni2+ 498 1,125 353

Zn2+ 2,802 7,547 1,478

Total 11,903 33,271 5,713

Figure 2 | Example of the homology-based method.

Figure 1 | Homology-based

method and machine-learning

method
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frequencies because we define a metal ion–binding site not as
interacting residues but as neighboring residues within 3.5 Å of a
metal ion center.
Performance of the homology-based method

In the homology-based method, we used different E-value
thresholds: 0.0001. 0.001, 0.01, and 0.1. The results are shown in
Supplementary material C. The number of true positive cases
increases and the number of true negative cases decreases as the E-
value threshold increases. The accuracy depends on the number of
true positives and true negatives, and in many metal ions, except
for Ca2+, Mg2+, and Ni2+, the increase in true positives is larger than
the increase in true negatives, and thus the accuracy is best for the
E-value threshold 0.1. We set this rather high E-value threshold
because the sequences of metalloproteins for each metal ion are
not so similar as can be detected by BLASTP although some kinds
of motifs may exist for binding sites. Table 2 shows the results of
homology-based prediction for each of 11 metal ions when the E-
value threshold is 0.1. The last column, “All,” shows the
performance for all 11 metal ions (not all metal ions in natural
proteins). Metal ions bound to some specific protein families have
high sensitivity. In terms of accuracy, the homology-based method
performed excellently, with an overall accuracy of 0.9905. It
should be noted that with this method, the amount of negative
data, which was easier to predict, was much larger than the
amount of positive data. For instance, the sensitivity was 0.3544
and the specificity was 0.9961 when an E-value of 0.1 was used to
predict Ca2+ binding sites, which means that only 35.44% of actual
binding sites (positive data) were correctly predicted. Since
substantial numbers of nonbinding sites were correctly predicted,
the accuracy became higher.
Performance of the machine-learning method

An SVM classifier with RBF kernel has at least two
parameters that need to be tuned for good performance: the cost
parameter , which determines the misclassification penalty; and
the gamma parameter , which is used in the RBF kernel function.
We used grid search for obtaining optimal values of and to
train the SVM models. As a result, we set and to 0.07 and 100,
respectively, to train the SVM models.

In order to determine an optimal window size, we used the
PSSM features of metal ion-binding proteins with window sizes of
9 to 19 to train SVM models. The results are shown in
Supplementary material D. As can be seen in the results, for Ca2+

and Mg2+, the accuracy increased from window size 9 to window
size 15; for Co2+, Cu+, Fe3+, Hg2+, Mn2+, and Zn2+, the accuracy
increased up to window size 13; for Cu2+ and Fe2+, the accuracy
increased up to window size 11; for Ni2+, the best performance was
shown at window size 9. More than half of the models performed
best at window size 13, and the accuracy of the others did not
change much in the range between their own optimal window size

and window size 13. Therefore, we selected 13 residues as the
optimal window size of all 11 types of metal ion-binding proteins.
Table 3 shows the performance of the machine-learning (SVM)
method with the PSSM feature. The accuracy was 0.8017 and the
MCC was 0.61 overall, and the performance was best for Cu+, with
an accuracy of 0.8846 and an MCC of 0.77. It is interesting that the
accuracy for Cu+ was the worst in the homology-based method.
Table 4 shows the performance of the machine-learning method
with the PSSM, the amino acid type, and the side chain type
features. The accuracy increased to 0.8336 and the MCC increased
to 0.67 overall. The performance was best for Zn2+, with an
accuracy of 0.8901 and an MCC of 0.78.
Comparison of the two methods

We compared the results of the homology-based method
and the machine-learning method. Figure 4 shows the number of
chains predicted by the two methods for each metal ion, and Table
5 shows the number of unpredictable chains in the homology-
based method. (In the homology-based method, we used the E-
value threshold of 0.01.) For 11 types of metal ion-binding protein,
the numbers of chains predicted by the SVM method were larger
than those predicted by the homology-based method, and only
78% of chains hit their homologous sequences. For instance, the
Cu+ binding sites of three chains (PDB IDs: 4BZ4-A, 4MAI-A,
5FJE-B) were successfully predicted by the SVM method and were
not predicted by the homology-based method. The SVM method
can better predict Ca2+-, Mg2+-, and Zn2+-binding chains compared
to the homology-based method. Since Ca2+- and Mg2+-binding
proteins exist in various families, the sensitivity of the homology-
based method is low. Zn2+-binding sites can often be represented
as motifs, and their sequence features tend to be local. The SVM
method can recognize these features, while the homology-based
method cannot align these sequence patterns. Table 5 summarizes
the performances of the homology-based method and the
machine-learning method. The high accuracy and low sensitivity
of the homology-based method were caused by the inequality
between negative and positive data. By contrast, the SVM method,
which predicted with a balanced performance of accuracy,
sensitivity, and specificity, was more effective.
Comparison with other work

We also compared our results with those of Kumar’s
method (Kumar et al., 2017), which used simplified amino acid
alphabets and a random forest model (Table 6). Our method using
an SVM model targeted the prediction of three types of metal ion-
binding protein (Cu+-, Fe2+-, and Hg2+-binding proteins) which are
not available in Kumar’s method. As for Hg2+ ion, however, our
dataset contains Hg2+ ions for the soaking in the X-Ray crystal
structure analysis, and the results are not clear. When the same
types of metal ion-binding proteins were compared, a considerable
increase in the accuracy of the Zn2+-, Mn2+-, and Fe3+-binding
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Table 2 | Performance of the homology-based method. MCC, Matthew’s correlation coefficient.

Metal ion Accuracy Sensitivity Specificity Precision MCC

Ca2+ 0.9873 0.3544 0.9961 0.5580 0.4386

Co2+ 0.9898 0.1566 0.9995 0.7778 0.3463
Cu2+ 0.9915 0.4486 0.9982 0.7616 0.5807

Cu+ 0.9872 0.2266 0.9997 0.9355 0.4570

Fe3+ 0.9922 0.4977 0.9986 0.8226 0.6365

Fe2+ 0.9921 0.3228 0.9993 0.8358 0.5166
Hg2+ 0.9893 0.0174 0.9999 0.7778 0.1153

Mg2+ 0.9931 0.3671 0.9975 0.5139 0.4310

Mn2+ 0.9929 0.3407 0.9992 0.7950 0.5177

Ni2+ 0.9903 0.1072 0.9993 0.5943 0.2497

Zn2+ 0.9896 0.4177 0.9983 0.7915 0.5706

All 0.9905 0.3591 0.9978 0.6563 0.4812

Table 3 | Performance of the SVM model using the PSSM feature. SVM, support vector machine; PSSM, position specific scoring

matrix; MCC, Matthew’s correlation coefficient.

Metal ion Accuracy Sensitivity Specificity Precision MCC
Ca2+ 0.7593 0.7100 0.8087 0.7882 0.5213
Co2+ 0.7931 0.7818 0.8033 0.7818 0.5851
Cu2+ 0.7842 0.7474 0.8211 0.8068 0.5299
Cu+ 0.8846 0.8519 0.9200 0.9200 0.7719
Fe3+ 0.8613 0.8765 0.8466 0.8466 0.7231
Fe2+ 0.8613 0.8750 0.8493 0.8358 0.6802
Hg2+ 0.6790 0.6941 0.6623 0.6941 0.2231
Mg2+ 0.7761 0.7149 0.8331 0.7997 0.5529
Mn2+ 0.8467 0.8480 0.8454 0.8423 0.6933
Ni2+ 0.7629 0.7566 0.7688 0.7566 0.4852
Zn2+ 0.8372 0.8237 0.8511 0.8514 0.6749
All 0.8017 0.7492 0.8537 0.8354 0.6064

Figure 3 | Superposition of the target

and homolog structures in the example

given in Figure 2. The target structure

1AH7:A is in red, while the three

homolog structures 1KHO:A, 2WXU:A,

and 1OLP:A are in blue, green, and

orange, respectively. Zn2+ of the target

structure are represented as spheres in

gray.
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Table 4 | Performance of the SVM model using combined features. SVM, support vector machine; MCC, Matthew’s

correlation coefficient.

Metal ion Accuracy Sensitivity Specificity Precision MCC
Ca2+ 0.7726 0.7382 0.8070 0.7932 0.5465
Co2+ 0.8103 0.7909 0.8279 0.8056 0.6194
Cu2+ 0.7789 0.7368 0.8211 0.8046 0.5599
Cu+ 0.8846 0.8519 0.9200 0.9200 0.7719
Fe3+ 0.8642 0.8824 0.8466 0.8475 0.7290
Fe2+ 0.8321 0.8657 0.8000 0.8056 0.6664
Hg2+ 0.6049 0.6000 0.6104 0.6296 0.2101
Mg2+ 0.7840 0.7358 0.8289 0.8003 0.5680
Mn2+ 0.8500 0.8649 0.8355 0.8366 0.7005
Ni2+ 0.7990 0.8307 0.7688 0.7734 0.6000
Zn2+ 0.8901 0.9410 0.8374 0.8570 0.7837
All 0.8336 0.8239 0.8432 0.8388 0.6673

Table 5 | Performance of the homology-based method and the support vector machine (SVM) method. MCC, Matthew’s

correlation coefficient.

Method Accuracy Sensitivity Specificity Precision MCC
Homology-based 0.9905 0.3591 0.9978 0.6563 0.4812
SVM 0.8336 0.8239 0.8432 0.8388 0.6673

Figure 4 | Numbers of chains

predicted by the homology-

based method and the

support vector machine

(SVM) method
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proteins was observed. The disparity between the accuracy of the
Ca2+-, Co2+-, Cu2+-, and Mg2+-binding proteins and the accuracy of
Kumar’s method was not apparent. For Ni2+-binding proteins, the
performance of our method was unsatisfactory.

Conclusions

Metal ions preferentially bind certain amino acid residues, and
many sequence motifs are known in the metalloproteins. In this
study, the homology-based method achieved higher accuracy and
specificity compared to the machine-learning (SVM) method,
while the machine-learning method showed balanced
performance with regard to accuracy, sensitivity, and specificity.
Especially, the sensitivity of the machine-learning method was
high, and we found that it could predict some metal ion-binding
sites that were not predicted by the homology-based method and
achieved a balanced performance of accuracy, sensitivity, and
specificity. We can conceive the following integration of the
machine-learning and homology-based methods. Since the
machine-learning method achieves high sensitivity, we first obtain
candidates of metal ion–binding sites using the machine-learning
method. Then, if the homology-based method predicts that the
candidates are nonbinding sites, we discard them. This result can
be reliable for very high specificity of the homology-based method.
In addition, if the homology-based method predicts metal ion–
binding sites when homologous sequences are hit by a BLASTP
search with low E-values, the result can also be used as candidates
of metal ion–binding sites. A detailed design of the integration
would be part of future research.
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