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Abstract 
Background: The expanding field of nanotechnology has 

led to significant interest in green chemistry approaches 

for synthesizing metal nanoparticles, which offer 

environmentally friendly, cost-effective, and recyclable 

solutions. Among these, zinc-oxide nanoparticles 

(ZnONPs) have gained attention for their potential as 

corrosion inhibitors. This study introduces a novel green 

synthesis of ZnONPs using Opuntia fragilis leaves (OFL) 

and explores their effectiveness in inhibiting the corrosion 

of mild steel in hydrochloric acid (HCl) solutions. Methods: 

ZnONPs were biosynthesized using OFL, and their 

physicochemical properties were characterized through 

SEM, TEM, XRD, EDX, UV-Vis, and FT-IR spectroscopy. The 

nanoparticles' average size, shape, elemental 

composition, and crystallinity were determined. The 

corrosion inhibition potential of OFL-ZnONPs on mild 

steel in various HCl concentrations was evaluated using 

weight loss measurements, electrochemical impedance 

spectroscopy, and potentiodynamic polarization. 

Numerical optimization was performed using response 

surface methodology (RSM) and artificial neural network  
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

(ANN) models to predict and optimize the process 

parameters influencing corrosion inhibition. Results: The 

characterization revealed ZnONPs with an average 

internal size of 15 nm, external size of 25 nm, hexagonal 

shape, and a crystallinity of 68.14%. Elemental analysis 

showed high zinc and oxygen content (75.23% and 

23.45%, respectively). Corrosion inhibition studies 

indicated that as the inhibitor concentration increased, 

weight loss decreased, resulting in higher inhibition 

efficiency. RSM optimization yielded a maximum 

inhibition efficiency of 77.31% under specific conditions (2 

M HCl, 4.75 hours, 0.4 g/L inhibitor concentration, and 

324.5 K). ANN optimization identified the optimal neuron 

number as 9, with a mean squared error (MSE) of 0.6053, 

confirming the robustness of the model. Conclusion: This 

study demonstrates the successful green synthesis of 

ZnONPs using OFL and their effective application as 

corrosion inhibitors for mild steel in HCl solutions. The use 

of RSM and ANN for process optimization highlighted the 

robustness and predictive accuracy of these models, 

paving the way for environmentally friendly and efficient 

corrosion inhibition strategies in industrial applications.  

Keywords: Green synthesis, zinc oxide nanoparticles, corrosion 

inhibition, mild steel, response surface methodology, Opuntia fragalis  
 
 

Introduction 

The slow, environmental-induced deterioration of metal is known 
as corrosion (Olawale et al., 2019). Minerals and ores originate 
when metals undergo chemical attack and their alloys revert to their  
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original states (Shahini et al., 2021). Chemical reactions that 
generate oxides or allow metal cations to enter the coating media 
primarily define corrosion processes and trigger distortions in the 
Metals and alloys that have disintegrated can cause massive 
structural damage, substantial financial losses, the need for repair 
or replacement, a dangerous environment, and an increase in 
environmental pollutants (Abdelaziz et al., 2021). Since mild steel 
is malleable, ductile, and has good thermal and electrical 
conductivity, it is used extensively in industrial production and 
many other major industries (Thiruvoth & Ananthkumar, 2022). 
Although there are actually multiple methods to mitigate corrosion, 
the most successful approach has been shown to be the 
incorporation of inhibitors (Al-Senani, 2020). A corrosion inhibitor 
is a chemical substance that efficiently and dramatically slows down 
the process of corrosion when added in a palpable concentration to 
corrosive media (Akinbulumo et al., 2020). A unique protective 
covering that the inhibitor forms on the metal's surface prevents 
corrosion by forming impenetrable barriers between the metal and 
the corrosive media solution (Jain et al., 2020). Furthermore, the 
heteroatoms responsible for adsorption on the metal surface such 
as oxygen, nitrogen, sulfur, phosphorus, etc. are what 
characterize corrosion inhibitors (Abdelaziz et al., 2021). The 
degree of inhibitor molecule adsorption on the metal surface is 
greatly dependent on its constituent groups, molecular structure, 
and electrons (Thiruvoth & Ananthkumar, 2022). In the recent 
past, a handful of harmless environmental inhibitors have been 
used to reduce excessive economic loss resulting from mild steel 
corrosion. These plant-based inhibitors include; Katemfe (Olawale 
et al., 2019), Cashew waste (Olawale et al., 2015), Ocimum 
gratissium (Udunwa et al., 2023), mango extract (Onukwuli & 
Omotioma, 2016), and bitter leaf root (Awe et al., 2015). The 
phytochemical composition of the aforementioned plant extracts, 
including their amino acid, tannin, and alkaloid content, is 
responsible for their distinctive inhibitory activity and action (Jokar 
et al., 2016). The irreversible harm that corrosion has brought to the 
environment and to people has led to a sustained 3 – 5% decrease 
in the gross national product in the majority of emerging nations. 
Because of this worry, innovative methods have been developed 
specifically to stop the threat that corrosion poses (Emembolu et al., 
2022).  
A new area of focus that has significantly revolutionized science is 
nanotechnology (Jain et al., 2020). Nonetheless, due to their 
dispersed morphology and high volume-to-size ratio, 
nanomaterials have demonstrated a wide range of applications and 
are currently undergoing phenomenal advancements, mostly in the 
fields of basic and applied sciences (Al-Senani, 2020).  In recent 
times, nanoscale conductors have received a lot of attention due to 
what is purported to be their unique qualities, which have 
applications in optoelectronics, medication delivery, corrosion 

mitigation, antibiotic resistance, and environmental pollution 
control (Olivieri et al., 2021). When combined, nanoparticles are 
thought to be versatile semiconductors known for their unique 
optical transparency and luminous properties in the UV-visible 
range (Rahman et al., 2022). Due to these nanoparticles' great 
electron mobility, huge exciton binding energy, wide band gap 
energy, high transmittance, and remarkable chemical and thermal 
durability, they have shown to have a unique contribution in recent 
years (Olivieri et al., 2021). There have been numerous strategies 
that have been developed, used, and demonstrated to be successful 
in synthesizing ZnONPs. Spray pyrolysis, sol-gel, hydrothermal, 
chemical vapor deposition, ultrasonic condition, precipitation, and 
microwave-assisted procedures are some examples of these 
techniques. Therefore, these synthetic methods appear lopsided in 
that they need a lot of energy and involve hazardous, non-
biodegradable compounds that could endanger ecosystem health 
and pose a serious threat to living things (Jayachandran et al., 2021). 
Conversely, biological synthesis, commonly referred to as green 
synthesis, has gained broad acceptance due to its low cost, ease of 
use, non-toxicity, and natural biodegradability. Furthermore, when 
compared to conventional physical and chemical processes, green 
synthesis routes guarantee that nanoparticles exhibit well-defined 
size and form (Salam et al., 2014). A few insights on the polymer-
based synthesis of zinc oxide have been published in the literatures 
(Faisal et al., 2021; Farooq et al., 2022; Thiruvoth & Ananthkumar, 
2022) as corrosion inhibitors in various scenarios, in addition to a 
few discoveries about the environmentally friendly production and 
application of ZnONPs leveraging biomaterials that mitigate 
corrosion (Jain et al., 2020). For the first time, however, this 
research describes the environmentally friendly production and 
characterisation of zinc oxide nanoparticles from Opuntia fragalis 
leaves to reduce mild steel corrosion at various HCl concentrations.  
Opuntia fragalis, a member of the Cactacae family, is also referred 
to as a prickly pear cactus. This perennial plant, which is widely 
used as foliage in Mexico, Latin America, South Africa, and the 
Mediterranean region, has small, cylindrical pads (Rehioui et al., 
2021). Furthermore, not much research has been conducted 
regarding this species; however, the genus Opuntia ficus-indica has 
detailed phytochemical features that have been published; the 
extract of Opuntia ficus-indica has a high oxidant capacity that 
stimulates the oxidation of red blood cell membranes due to its 
antioxidant activity. It was discovered to contain carotene, vitamin 
C, and vitamin E (Suarez-Hernandez et al., 2014). It was discovered 
that the ethanol extract contains a significant quantity of phenolics 
(180.3 mg/g), which may be the active ingredients in Opuntia 
indica-ficus that give it the antioxidant qualities. In a similar vein, 
studies on the corrosion-inhibition impact of green formulations 
based on Opuntia dillenii seed oil for iron in acid rain solutions have 
shown that flavonoids, polyphenols, and ascorbic acid are the main 
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components that give these formulations their corrosion-inhibiting 
qualities (Rehioui et al., 2021).  
More findings on the modeling and optimization of metal 
corrosion inhibition in various corrosive fluids using ANN and 
RSM have been published recently. For example, mild steel 
inhibition in sulfuric acid (Abdallah et al., 2018), green corrosion 
inhibition of C38 steel in 0.5 M H2SO4 by Ocimum basilicum 
essential oil (Ansari et al., 2022), and performance of surfactants as 
a corrosion inhibitor for mild steel in 1.0 M H2SO4 (Haladu et al., 
2022). The broad array of RSM can be attributed to its ability to 
provide simultaneous interactions between the process parameters 
and their responses. These include the following types of analyses: 
a 3-D plot that is used to represent variable interactions; an analysis 
of variance (ANOVA) that is used to confirm model fitness and the 
significance of each category of interactions; split-plot design 
(SPD), box Behnken design (BBD), and central composite design 
(CCD), which express the necessary experimental runs (Haladu et 
al., 2022). Comparably, by training the dataset, ANN is a non-linear 
model that can be employed to establish a correlation between the 
independent variables and the responses. (Amodu et al., 2022). The 
network is designed principally for learning and pattern 
recognition so as to generate responses from the input variables 
through a recurrent learning process by altering the synaptic 
connection between the neutrons. Because of this, ANNs are made 
to replicate the behavior of biological neural systems. They have 
been found to perform better with huge datasets, but when used 
with smaller datasets in experiments, they can consolidate their 
predictive performance. (Alamri, 2022).    
The aim of this finding is to employ RSM and ANN algorithm to 
model, optimize, and predict responses of corrosion inhibition of 
mild steel in different HCl concentrations by OFL-ZnONPs using 
gravimetric method for the very first time. The interactive effect of 
the process parameters was meticulously tracked in order to 
develop mathematical models for responses (weight loss, corrosion 
rate, surface coverage, and percentage inhibition efficiency) that 
can be used to forecast the correlation between experimental and 
RSM-predicted values, and finally, the system was improved and 
validated through numerical optimisation.  
 
2. Materials and Methods 
The mild steel utilized in the course of this investigation was 
mechanically partitioned into coupons with dimensions of 4 × 2 × 
0.1 cm possessing the following contents (% wt): Fe - 99.3, Ni - 
0.043, Mn - 0.34, Al - 0.03, Cu - 0.069, Co - 0.069, and Ca - 0.087. 
Fresh Opuntia fragalis leaves were obtained from the Garden of 
Biological Science at Ahmadu Bello University in Nigeria. OFL 
extract was found to contain total dietary fibre (41.7 - 47.2 %), raw 
protein (5 – 7 %), raw fat (1.9 – 9 %), carbohydrate (2.8 %), 
micronutrients (K, Mg, P, and P), amino acid, pectin, and 

polyunsaturated fatty acid. Additionally, the physical characteristics 
of OFL extract were determined to be surface tension (20.2 
dynescm-1), specific gravity (1.65), viscosity (38.12 cp), flash point 
(273 0C), and density (1.66 gL-1cm-1).  
2.2 Green Synthesis of OFL-ZnONPs 
Opuntia fragalis leaves (OFL) were first cleaned with tap water and 
then again with deionized water. Thereafter, was allowed for three 
weeks to dry at room temperature. The dried leaves were crushed, 
and 10 g of the crushed leaves were incorporated with 100 ml of 
deionized water. The mixture was then heated to 70 0C for 15 
minutes while being stirred using a magnetic stirrer to guarantee 
that the matrix was evenly dispersed. The resulting matrix was then 
centrifuged and filtered to get rid of any suspended contaminants 
(Fakhari et al., 2019). Additionally, 1 ml of aqueous OFL extract and 
25 ml of zinc acetate solution were incorporated, and the matrix was 
thoroughly mixed for an hour at room temperature using a 
magnetic stirrer. The matrix was then stirred continuously at 70 0C 
for two hours until the color ultimately changed to light yellow. 
Progressively, 1.0 M NaOH was added to achieve a pH of 12. After 
filtering, the precipitate was repeatedly washed, centrifuged, and 
then calcined at 400 0C to eradicate moisture and volatile 
contaminants (Jayachandran et al., 2021).    
2.3 Characterization of OFL-ZnONPs 
Several spectroscopic measures were adopted to characterize the 
biosynthesized OFL-ZnONPs. 1 ml of the matrix was collected from 
the sample after it had been repeatedly washed and centrifuged for 
30 minutes at 400 rpm, in accordance with the UV-Vis testing. The 
range of the UV-Vis spectra was determined to be 200 – 800 nm. 
Using an X-ray diffractometer, the structure and crystallinity of 
OFL-ZnONPs were accomplished. The SEM was assigned to 
portray the size and morphology of the OFL-ZnONPs and 
quantitative constituents of OFL-ZnONPs were analysed using 
Energy Dispersive X-ray. The functional groups and internal 
morphology of OFL-ZnONPs were ascertained using FT-IR and 
TEM respectively.  
2.4 Template for corrosion inhibition efficiency of OFL-ZnONPs  
2.4.1 Weight Loss Approach - Experimental Design Approach 
The experimental runs were designed and generated with 
DesignExpert version 13 (Stat-Ease Corp., America). To investigate 
the corrosion inhibition of mild steel in differing HCl 
concentrations by OFL-ZnONPs, five process variables were 
implemented: acid concentration (AC, 0.5 – 2.5 M), immersion 
time (IT, 1 – 6 hrs), inhibitor concentration (IC, 100 – 500 mg/L), 
and temperature (T, 299 – 333K). The aforementioned variables 
were analyzed at five coded levels, with each coded level denoting 
negative alpha, negative factorial, centre, positive factorial, and 
positive alpha, respectively (Table 1), and resulting in up to thirty 
experimental runs. Additionally, the test solutions were inserted 
into the thermostatic water bath in accordance with the specified 
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process parameter interactions, as shown in Table 2, to carry out the 
weight loss measurements. However, the equations (1), (2), (3), and 
(4), respectively, represent the weight loss (WL, gcm-2), corrosion 
rate (CR, gcm-2hr-1), surface coverage (SC), and percentage 
inhibition efficiency (% IE, %).  
∆𝑊𝑊 = 𝑊𝑊𝐼𝐼 −𝑊𝑊𝐼𝐼𝐼𝐼                       
                                   (1) 
𝐶𝐶𝐶𝐶 = ∆𝑊𝑊

𝐴𝐴𝐴𝐴
                                                                                                                                (2) 

𝑆𝑆𝐶𝐶 = 𝑊𝑊𝐼𝐼−𝑊𝑊𝐼𝐼𝐼𝐼
𝑊𝑊𝐼𝐼

                                                                                                                           

(3) 
 % IE = 𝑊𝑊𝐼𝐼−𝑊𝑊𝐼𝐼𝐼𝐼

𝑊𝑊𝐼𝐼
× 100                                                                                                            

(4) 
Where A is the coupon's area, t is the immersion time, WI is the 
coupon's weight in the absence of inhibitor, WII is its weight in the 
presence of inhibitor, and ∆W is the coupon's weight loss in both 
situations.  
2.5 RSM - Statistical Analysis and Modelling 
The data from the corrosion experiment was statistically analysed 
using RSM. Regression modelling was used to establish the 
correlation between the responses (WL, CR, SC, and %IE) and the 
process parameters (AC, IT, IC, and T). Regression statistical model 
equations were generated that explained how the experimental data 
impacted the responses. ANOVA was implemented to establish the 
models' magnitude of fitness by leveraging p-values to identify the 
variables' significance on the system and fisher value to ascertain 
the magnitude of influence of process parameters on the responses. 
Equation (5) represents a well-defined second-order standard 
model equation. 
𝑌𝑌= 𝑎𝑎0 + ∑ 𝑎𝑎𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖  + ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖2 + ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=𝑖𝑖+1
𝑛𝑛=1
𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖  + Ɛ                                         

(5) 
where 𝛼𝛼0 is the offset term, X1, 𝑋𝑋2, 𝑋𝑋3, …, and 𝑋𝑋𝑋𝑋 are the 
independent variables, 𝛼𝛼𝛼𝛼, 𝛼𝛼𝛼𝛼𝛼𝛼, and 𝛼𝛼𝛼𝛼𝛼𝛼 measure linear, squared, and 
interaction effects, respectively, and 𝜀𝜀 is the random error.  
2.6 ANN – Machine Learning Approach  
MATLAB version 17 (MathWorks, Corp., America) Artificial 
Neural Network Programming Toolkit was used to optimize and 
model the ability to inhibit corrosion of mild steel by OFL-ZnONPs 
at varying HCl concentrations. Using the multilayer feeding 
forward neural network model, the responses were predicted (Table 
3). Using the root mean square error (RMSE) and coefficient of 
determination (R2) acquired at various neuron optimization phases, 
the network was trained by varying the number of neurons (hidden 
layers) to find the ideal neurons that provide the best correlation for 
the model. The feeding-forward network propagation's ANN 
architecture, which consists of the target/output layers (WL, CR, 
SC, and % IE), hidden layers (number of neurons), and input layers 
(AC, IT, IC, and T), is illustrated in Figure 1. The input and output 
layer perturbations are shown in Table 3, and the number of 
neurons used for training is 1, 2, 4, 7, 9, 11, 13, and 15. By 

segregating the experimental dataset into three groups of data at 
random-training (70 %), validation (20 %), and assessment (10 %)- 
the network's functionality was evaluated (Amodu et al., 2022).  
2.7 Electrochemical Assessment  
Mild steel with an exposed dimension of 1 cm2 was employed as the 
working electrode for these investigations. The reference and 
counter electrodes that constitute the electrochemical cell are 
Ag/AgCl and platinum rod. All measurements were conducted at 
25±1 0C on Metrohm AutoLab Potentiostat/Galvanostat 
(PGSTAT302N) controlled by AutoLab Nova 2.1 software. 
However, the working electrode was introduced in the test solution 
for 25 min to ensure a stable open circuit potential (OCP) during 
which it undergoes corrosion in the electrolytes prior each 
measurement. The mild steel (working electrode) potential in the 
corrosion niche-maintained sweep rate between – 250 mV and + 
250 mV relative to the OCP at scan rate of 1 mVs-1. The corrosion 
inhibition efficiency is extrapolated from corrosion densities 
captured in equation 6. 

% 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
0 − 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖

𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  ˟ 100                                                                               (6) 

where 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐0  and  𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖  represent the corrosion densities in the 
absence and presence of inhibitor, respectively, and % IEPDP is the 
percentage inhibition efficiency.  
In addition, the electrochemical impedance was measured by 
introducing an alternating current signal of 10 mV to navigate 
through the electrochemical unit at a range of 10 1 Hz to 105 Hz. 
The percentage inhibition efficiency (% IEEIS) was extrapolated 
using equation 7. 

% 𝐼𝐼𝐼𝐼𝐸𝐸𝐼𝐼𝐸𝐸 =  𝑅𝑅𝑐𝑐𝑐𝑐
𝑝𝑝 − 𝑅𝑅𝑐𝑐𝑐𝑐

𝑎𝑎

𝑅𝑅𝑐𝑐𝑐𝑐
𝑝𝑝          

          (7) 
Where 𝐶𝐶𝑐𝑐𝐴𝐴

𝑝𝑝  and  𝐶𝐶𝑐𝑐𝐴𝐴𝑎𝑎  = charge transfer resistance in the presence of 
inhibitor and blank, respectively. 
2.8 Surface Analysis    
Scanning electron microscope (SEM) model JEOL JSM – 6610 LV 
was employed for surface examination of mild steel that was 
allowed to corrode in the absence and present of OFL-ZnONPs for 
48 hr. Thereafter, the coupon was picked out from the corrosion 
matrix after 48 hr, mildly washed with double distilled water, 
acetone and air dried before examination.    
 
3. Results and discussion  
3.1 Examination of the biosynthesized OFL-ZnONPs  
3.1.1 Ultraviolet-Visible Spectroscopy 
The biomaterial's phytochemicals accelerated the reduction of zinc 
ions in the mixture to zinc oxide. The biomaterial extract functions 
as a stabilizing and reducing factor. This was demonstrated 
convincingly in the examination of the UV-Vis spectra obtained 
between 200 and 800 nm, as seen in Figure 2a. A recognisable peak 
at 385 nm was evident in the OFL-ZnONPs spectrum, and no 
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significant peak that is particular to ZnO nanoparticles 
predominated during the optimization process. Furthermore, it 
was noted that the wavelength range of the absorbance peak for 
ZnO nanoparticles is 310 – 390 nm (Jayachandran et al., 2021).  
3.1.2 Energy Dispersive X-ray   
The presence of zinc in the oxide form, illustrated in Figure 2b, was 
verified by an EDX microgram, which exhibited a clear and sharp 
peak for zinc and oxygen.  By employing EDX, the constituent of 
each element found in the supernatant was determined. The results 
show a sharp signal of 75.23 %, 23.45 %, and 1.32 % for zinc, oxygen, 
and traces of other elements, respectively, whose weight percentage 
is comparable to that illustrated in investigations that use Cayratia 
pedata leaf extract to synthesize zinc oxide nanoparticles. 
(Jayachandran et al., 2021). Furthermore, two distinct strong peaks 
were detected at 3.20 and 3.75 KeV for zinc, and at 3.5 KeV for 
oxygen (Jayachandran et al., 2021; Salih et al., 2021).  
3.1.3 Scanning Electron Microscopy 
The form and structure of OFL-ZnONPs were examined using 
SEM. The shape, size, and area of the OFL-ZnONPs were estimated 
using ImageJ software. As illustrated in Figure 2c, the OFL-
ZnONPs have an average size and area of 15 nm and 7500 nm2, 
respectively. They have a wide coverage area to restrict the 
penetration of HCl to the coupon's surface.  
3.1.4 Transmission Electron Microscopy  
The interior topography of the OFL-ZnONPs, which is a result of 
their crystalline property, was visualized using TEM. ZnONPs have 
an average size of 25 nm and an area of 170 nm2, as seen in Figure 
2d. ZnONPs were found to exhibit a compacted architecture 
because of their high surface energy, which was produced during 
fabrication in an aqueous media, and probably also because of their 
proximity to one another (Faisal et al., 2021).  
3.1.5 X-Ray Diffraction  
XRD elucidates the crystalline pattern of OFL-ZnONPs. Figure 2e 
depicts the intensity level versus the diffracted angle. The spectra 
reveal features of the crystal planes. The angle of diffraction was 
given to their respective miller indices, which were utilized to 
extrapolate the typical crystalline size, as shown in Table 2. The 
typical size of OFL-ZnONPs was extrapolated using the Debye-
Scherrer formula, as shown in equation 8. 
               D = kω

βcosθ
                                                                                                           (8) 

Where D is the mean crystalline size, ω is the x-ray wavelength 
(1.5406 Å), k is the Scherrer constant (0.9), β is the diffraction peak's 
whole width at half maximum (FWHM) in radians, and is the 
Bragg's diffraction angle. The mean crystalline dimension of the 
produced OFL-ZnONPs was calculated using Scherrer's 
formula and was found to be 11.69 nm. The peak was found to be 
hexagonal, with crystal parameters of a = 3.245 Å, c = 5.201 Å, and 
u = 0.3445 Å.  
3.1.6 FT-IR Analysis 

The interaction of flavonoids, terpenoids, alkynes, and phenolic 
compounds contributes to the synthesis of OFL-ZnONPs, as 
demonstrated by FT-IR data. The FT-IR spectra of biosynthesized 
OFL-ZnONPs in the 400 - 4000 cm-1 range are shown in Figure 2f. 
The functional groups seemed crucial for transforming zinc ions to 
ZnO. The band at 3315.31 cm-1 corresponds to the O-H stretching 
of a phenolic molecule. The presence of the aromatic group was 
associated with 1406.98 cm-1, while the band at 1318.48 cm-1 was 
associated with the C-O stretch of alcohol, carboxylic, and esters.  
Furthermore, the band recorded at 685.54 cm-1 confirmed the 
formation of biosynthesized OFL-ZnONPs (Salih et al., 2021).     
3.2 Appraisal of CCD - Regression Framework Equations 
Employing CCD to statistically design, the experimental template 
enables researchers to investigate the effects of process parameters 
on the corrosion inhibition of steel by OFL-ZnONPs at differing 
HCl concentrations. The experimental and predicted outcomes are 
expressed in the design template, as Table 3 demonstrates. The 
optimal responses were found to be attained at the optimal process 
factor interactions, which were 2 M, 4.75 hours, 0.4 g/ml, and 324.5 
K for AC, IT, IC, and % IE, respectively. Nevertheless, second-
order exponential model equations were generated using the 
experimental data in terms of factors coded as a function of WL, 
CR, SC, and %IE using RSM after the insignificant terms were 
screened as suggested in equations (9), (10), (11), and (12), 
respectively, in order to conceptualise the simultaneous interactive 
impact caused by the process parameters on the responses.   
𝑊𝑊𝑊𝑊(𝑂𝑂𝑂𝑂𝑂𝑂−𝑍𝑍𝑛𝑛𝑂𝑂𝑍𝑍𝑃𝑃𝑍𝑍) = − 5.497 − 10.83𝐵𝐵 − 11.77𝐷𝐷 − 10.64𝐴𝐴𝐷𝐷 −

3.61𝐵𝐵𝐶𝐶 − 0.009𝐷𝐷2 − 3.69𝐴𝐴𝐵𝐵𝐶𝐶 − 3.55𝐴𝐴𝐶𝐶𝐷𝐷 − 0.016𝐴𝐴2𝐷𝐷 +
0.007𝐴𝐴2𝐵𝐵2                                                   (9) 
 
𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂𝑂𝑂−𝑍𝑍𝑛𝑛𝑂𝑂𝑍𝑍𝑃𝑃𝑍𝑍) =  −1.55 + 4.49𝐴𝐴 − 4.80𝐷𝐷 − 0.002𝐴𝐴𝐷𝐷 −

1.48𝐵𝐵𝐶𝐶 − 1.60𝐶𝐶𝐷𝐷 + 0.028𝐵𝐵2 + 0.035𝐴𝐴2𝐵𝐵 − 0.013𝐴𝐴2𝐵𝐵2                                                                                           
(10) 
 
𝑆𝑆𝐶𝐶(𝑂𝑂𝑂𝑂𝑂𝑂−𝑍𝑍𝑛𝑛𝑂𝑂𝑍𝑍𝑃𝑃𝑍𝑍) =  +6.599 + 0.015𝐴𝐴 + 0.009𝐵𝐵 + 0.011𝐴𝐴𝐵𝐵 +

21.30𝐴𝐴𝐷𝐷 + 0.19𝐷𝐷2 + 0.007𝐴𝐴𝐵𝐵𝐷𝐷 + 7.10𝐴𝐴𝐶𝐶𝐷𝐷 − 0.004𝐵𝐵𝐶𝐶𝐷𝐷 +
0.013𝐴𝐴2𝐵𝐵 − 0.003𝐴𝐴2𝐶𝐶 + 0.036𝐴𝐴2𝐷𝐷      (11) 
 
%𝐼𝐼𝐼𝐼(𝑂𝑂𝑂𝑂𝑂𝑂−𝑍𝑍𝑛𝑛𝑂𝑂𝑛𝑛𝑍𝑍𝑃𝑃𝑍𝑍) =  +659.93 + 145𝐴𝐴 + 0.90𝐵𝐵 + 1.11𝐴𝐴𝐵𝐵 +

2129.66 + 1.28𝐵𝐵𝐷𝐷 + 1.95𝐷𝐷2 + 0.66𝐴𝐴𝐵𝐵𝐷𝐷 + 710.07𝐴𝐴𝐶𝐶𝐷𝐷 +
1.30𝐴𝐴2𝐵𝐵 − 0.26𝐴𝐴2𝐶𝐶 + 3.63𝐴𝐴2𝐷𝐷                 (12) 
 
The model's R2 values of 0.9159, 0.9613, 0.9471, and 0.9647 for WL, 
CR, SC, and %IE, respectively, indicate the strong correlation 
between the actual and expected (RSM) values that express the 
corrosion inhibition of mild steel by OFL-ZnONPs and are 
consistent with the desirability range. The terms' preceding positive 
and negative signs indicate the process parameters' antagonistic and 
synergistic impacts on the responses, which, in turn, imply 
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competitive and cooperative effects on the responses. A single 
process parameter revealed a uni-factor effect in the model 
equations; two process parameters described a double-factor effect; 
and the emergence of a second-order process parameter revealed 
that there was a quadratic impact on the responses. For the purpose 
of tracking experimental error, data uniformity, and residual 
values, the six CCD design centre points were considered, 
replicated, and carried out during the experiment of Garba et al. 
(2016).  
3.3 Statistical Assessment  
AVONA was also used to determine the single, double, and 
quadratic effects of the process parameters on the percentage 
inhibition efficiency, weight loss, corrosion rate, and surface 
coverage. The models' adequacy and significance are confirmed by 
the sum of squares, average squares, F-values, and p-values for WL, 
CR, SC, and % IE, respectively, in Tables 4, 5, 6, and 7. Process 
parameters are considered significant if the Prob.˃ F value is less 
than 0.05. The ANOVA test revealed that the significance of the 
model is confirmed by F-values larger than 4 and Prob ˃  F of < 0.05. 
Additionally, since we want the models to fit, the lack of fit (LOF) 
should be greater than p ˃ 0.05. A, B, AD, BC, CD, B2, A2B, A2B2; A, 
B, AD, BC, CD, B2, A2B, A2B2; A, B, AB, AD, D2, ABD, ACD, BCD, 
A2B, A2C, A2D; and A, B, AB, AD, BD, D2, ABD, ACD, A2B, A2C, 
A2D are the process parameters that have a significant impact on 
the WL, CR, SC, and % IE, while the remaining terms are 
insignificant and are shown in Tables 4, 5, 6, and 7, respectively. It 
is possible to presume that the generated models are accurate and 
precise in forecasting the impact of the process parameters on the 
WL, CR, SC, and % IE of mild steel by OFL-ZnONPs, based on the 
statistical findings obtained. Furthermore, it can be seen from 
Figures. 5(a), (b), and (c) that the actual and predicted values for 
WL, CR, and % IE, respectively, indicate that the models developed 
effectively established a strong correlation between the corrosion 
process parameters and the responses.  
3.4 Graphical and Numerical Optimization of Process Parameters 
Both 3-D surfaces (Figures 3a, b, and c) and 2-D contour plots 
(Figures 3d, e, and f) effectively illustrate the simultaneous influence 
of the process parameters. In the former, a robust panoramic 
display of the responses is depicted in three dimensions, whereas in 
the latter, the response surface is expressed using isolines, or 
responses with continuous lines on a two-dimensional 
plane (Emembolu et al., 2022). Furthermore, Figure 3a illustrates 
that weight loss decreases over time as inhibitor concentration rises, 
indicating that increasing inhibitor concentration also enhances 
inhibitor potency. In addition, Figure 3b also shows that the rate of 
corrosion decreased as the inhibitor concentration increased 
suggesting that boosting the concentration has a significant effect 
on the inhibitor's efficiency. Conversely, elevated temperatures led 
to a negative reduction in the inhibitor's efficacy as a result of the 

bonds on the mild steel surface being desorbed or rearranged 
(Oyewole et al., 2023). Further, the contour's conformation 
indicates the extent to which the process factors under investigation 
interact. Elliptical contours completely portray 
significant interactions between process parameters, whereas 
circular contours drastically convey insignificant interactions. 
Significant interactions are clearly seen between B and C (See Figure 
3d, Table 4, & p-value = 0.0218) for WL and between C and B (See 
Figure 3e, Table 5, & p-value = 0.0305) for CR; on the other hand, 
C and D (See Figure 3f, Table 5, p-value = 0.0906) for % I.E exhibit 
insignificant interactions.  
Nonetheless, the optimization of the responses was 
consolidated using numerical optimization. The process 
parameters were optimized to accurately forecast the potential of 
OFL-ZnONPs to impede mild steel corrosion at various HCl 
concentrations. The desirability ramp was generated by the 
DesignExpert software and is employed to determine the best 
process points for every response. Consequently, as shown in Figure 
4, an optimal WL of 0.2559 gcm-2, CR of 0.4072 gcm-2hr-1, and % IE 
of 77.31 % were predicted at AC = 1.4 M, IT = 2.68 hr, IC = 239.936 
mg/ml, and T = 315.5 K. 
3.5 ANN Model Appraisal  
ANN was implemented to model, optimize, and forecast (Table 3) 
the responses of mild steel corrosion inhibition by OFL-ZnONPs at 
varying HCl concentrations. Fig. 7 shows the suggested 
optimized ANN architecture of 4:9:4. Employing the tan-sigmoidal 
transfer function, experimental data was subjected to the gradient 
descent (GD), levenberg marquet (LM), and scaled conjugate 
gradient (SCG) algorithms to forecast the corrosion inhibition of 
mild steel employing the ANN models that were developed. Table 
8 contrasts the three algorithms' respective performances. The 
techniques stated above were examined for hidden layer neurons 
with a range of 1 - 15. Nevertheless, the total number of hidden layer 
neurons will impact the ANN's functionality. While employing 
fewer hidden layer neurons will affect the network's learning 
efficiency and ability to predict responses, using a large number of 
hidden layer neurons will provide greater flexibility but also raise 
the likelihood of overfitting the models. The success rate of the 
trained networks is therefore compared to the different hidden layer 
neurons in order to establish the optimum number of hidden 
neurons (Gadekar & Ahammed, 2019). It is noticeable that the 
network's performance and efficiency increase as its neuron 
number increases. The network may have been overtrained during 
the training phase, which would explain why the coefficient of 
determination (R2) is different from the trend and fluctuates during 
the testing and validation phases. The network architecture that 
demonstrated the lowest MSE and the R2 value closest to 1 for the 
training, validation, and testing phases was therefore selected. 
Efficiently chosen as the model was the SCG algorithm of 
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Table 1. Experimental design for uncoded factor levels.  
Process parameters Symbol Units Factor-level range 

-α -1 0 +1 +α 
Acid concentration  AC M 0.5 1.0 1.5 2.0 2.5 
Immersion time  IT hr 1 2.25 3.5 4.75 6 
Inhibitor 
concentration  

IC mg/ml 100 200 300 400 500 

Temperature T K 299 307.5 316 324.5 333 
 

 
Figure 1. ANN architecture of OFL-ZnONPs' corrosion inhibition in mild steel at various HCl concentrations            
 

 

 
 
Figure 2. (a) UV-Vis band gap (b) EDX pattern (c) SEM plate (d) TEM plate and (e) XRD pattern and (f) FTIR spectra of biosynthesized 
OFL-ZnONPs  
 
 
 
 
 
 
 
 
 
 
 



BIOSENSORS & NANOTHERANOSTICS                RESEARCH 
 

https://doi.org/10.25163/biosensors.317339                                                                                             1–17 | BIOSENSORS & NANO | Published online Mar 30, 2024 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Outcome of XRD Analysis at diverse diffraction angles 
S/N 2θ FWHM (β) Miller indices (hkl) Particle size (D) 

1 32.83 0.58 (201) 14.9 
2 34.56 1.26 (002) 6.9 
3 36.23 0.89 (101) 9.8 
4 47.84 0.96 (102) 9.4 
5 56.72 0.60 (110) 15.8 
6 62.92 0.80 (103) 11.7 
7 68.02 0.80 (112) 13.3 

Table 3. CCD matrix of mild steel corrosion inhibition at varying HCl concentrations in the present of OFL-ZnONP 

Run AC 
(M) 

IT 
(hr) 

IC 
(g/L) T (K) 

WL (mgcm-2) CR (mgcm-2hr-1) SC % IE (%) 

Exp. RSM ANN Exp. RSM ANN Exp. RSM ANN Exp. RSM ANN  

1 2.0 4.75 0.4 307.5 0.2422 0.2392 0.2458 0.0850 0.0853 0.0830 0.6269 0.6135 0.6354 62.69 61.35 64.82  

2 1.5 3.50 0.3 333.0 0.2411 0.2411 0.2141 0.1148 0.1148 0.0931 0.6749 0.6739 0.6966 67.49 67.39 64.25  

3 1.5 3.50 0.5 316.0 0.2437 0.2426 0.2479 0.1160 0.1231 0.1185 0.6129 0.6160 0.6188 61.29 61.60 63.55  

4 1.5 3.50 0.3 299.0 0.1795 0.1795 0.2192 0.0855 0.0855 0.0852 0.7067 0.7057 0.6857 70.67 70.57 64.36  

5 1.5 3.50 0.3 316.0 0.2446 0.2464 0.2488 0.1165 0.1242 0.1177 0.6162 0.6120 0.6173 61.62 61.20 63.59  

6 2.0 4.75 0.2 307.5 0.2436 0.2434 0.2442 0.0855 0.0862 0.0805 0.6247 0.6336 0.6398 62.47 63.36 64.92  

7 2.0 4.75 0.4 324.5 0.2052 0.2173 0.2165 0.0720 0.0794 0.0591 0.7731 0.7645 0.7012 77.31 76.45 65.36  

8 1.0 2.25 0.4 324.5 0.2478 0.2444 0.2540 0.1836 0.1844 0.1837 0.6182 0.6202 0.6004 61.82 62.02 62.26  

9 1.0 2.25 0.2 324.5 0.2495 0.2485 0.2561 0.1848 0.1857 0.1837 0.6160 0.6205 0.5962 61.60 62.05 62.27  

10 2.0 4.75 0.2 324.5 0.2503 0.2500 0.2218 0.0878 0.0867 0.0626 0.7323 0.7364 0.6897 73.23 73.64 65.29  

11 2.0 2.25 0.2 324.5 0.2498 0.2468 0.2427 0.1850 0.1826 0.1860 0.6302 0.6314 0.6316 63.02 63.14 62.70  

12 1.5 3.50 0.3 316.0 0.2457 0.2464 0.2488 0.1170 0.1242 0.1177 0.6181 0.6120 0.6173 61.81 61.20 63.59  

13 1.5 3.50 0.3 316.0 0.2464 0.2464 0.2488 0.1173 0.1242 0.1177 0.6133 0.6120 0.6173 61.33 61.20 63.59  

14 1.0 4.75 0.2 324.5 0.2495 0.2514 0.2437 0.0875 0.0898 0.0879 0.6592 0.6546 0.6398 65.92 65.46 64.70  

15 1.5 3.50 0.3 316.0 0.2458 0.2464 0.2488 0.1170 0.1242 0.1177 0.6114 0.6120 0.6173 61.14 61.20 63.59  

16 1.5 1.00 0.3 316.0 0.2443 0.2506 0.2677 0.4072 0.4072 0.2597 0.6037 0.5941 0.5652 60.37 59.41 60.75  

17 0.5 3.50 0.3 316.0 0.2439 0.2479 0.2491 0.1161 0.1241 0.1144 0.6265 0.6145 0.6135 62.65 61.45 63.38  

18 2.0 2.25 0.2 307.5 0.2432 0.2402 0.2475 0.1801 0.1821 0.1820 0.6099 0.6062 0.6210 60.99 60.62 62.75  

19 2.5 3.50 0.3 316.0 0.2473 0.2449 0.2365 0.1178 0.1243 0.1182 0.6624 0.6726 0.6510 66.24 67.26 64.10  

20 1.5 6.00 0.3 316.0 0.2469 0.2422 0.2418 0.0686 0.0686 0.0688 0.6396 0.6300 0.6615 63.96 63.00 66.12  

21 1.0 4.75 0.2 307.5 0.2429 0.2447 0.2373 0.0852 0.0830 0.0810 0.6131 0.6128 0.6567 61.31 61.28 65.00  

22 1.5 3.50 0.3 316.0 0.2453 0.2464 0.2488 0.1168 0.1242 0.1177 0.6108 0.6120 0.6173 61.08 61.20 63.59  

23 1.0 2.25 0.4 307.5 0.2414 0.2379 0.2381 0.1788 0.1839 0.1598 0.6055 0.6118 0.6367 60.55 61.18 62.73  

24 1.0 2.25 0.2 307.5 0.2426 0.2418 0.2318 0.1797 0.1789 0.1522 0.6033 0.6035 0.6513 60.33 60.35 62.92  

25 2.0 2.25 0.4 324.5 0.2490 0.2433 0.2378 0.1844 0.1813 0.1833 0.6652 0.6595 0.6423 66.52 65.95 62.74  

26 1.0 4.75 0.4 324.5 0.2484 0.2476 0.2397 0.0872 0.0825 0.0855 0.6432 0.6543 0.6484 64.32 65.43 64.74  

27 1.0 4.75 0.4 307.5 0.2417 0.2411 0.2423 0.0848 0.0821 0.0863 0.6143 0.6211 0.6445 61.43 62.11 64.83  

28 1.5 3.50 0.3 316.0 0.2449 0.2464 0.2488 0.1896 0.1242 0.1177 0.5870 0.6120 0.6173 58.70 61.20 63.59  

29 1.5 3.50 0.1 316.0 0.2468 0.2502 0.2484 0.1175 0.1253 0.1158 0.6113 0.6080 0.6188 61.13 60.80 63.65  

30 2.0 2.25 0.4 307.5 0.2559 0.2653 0.2518 0.1896 0.1872 0.1877 0.5870 0.5861 0.6109 58.70 58.61 62.59  
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Figure 3. The Interactive effects of process parameters on mild steel corrosion inhibition by OFL-ZnONPs are illustrated in 3-D 
surfaces (a, b, and c) and contour plots (d, e, and f) 
 
Table 4. ANOVA test for WL (g/cm-2) of corrosion inhibition of mild steel in different HCl concentrations by OFL-ZnONPs  

Source Sum of Squares df Mean Square F-value p-value Verdict 
Model 0.0056 13 0.0004 13.41 < 0.0001 Significant 
A-AC 0.0000 1 0.0000 0.4081 0.5320  
B-IT 0.0002 1 0.0002 6.46 0.0218  
C-IC 0.0001 1 0.0001 2.73 0.1182  
D-T 0.0002 1 0.0002 6.39 0.0224  
AB 0.0002 1 0.0002 6.73 0.0196  
AD 0.0002 1 0.0002 6.24 0.0238  
BC 0.0002 1 0.0002 6.45 0.0218  
CD 0.0002 1 0.0002 6.41 0.0222  
D² 0.0022 1 0.0022 69.00 < 0.0001  

ABC 0.0002 1 0.0002 6.73 0.0196  
ACD 0.0002 1 0.0002 6.23 0.0238  
A²D 0.0013 1 0.0013 40.38 < 0.0001  
A²B² 0.0003 1 0.0003 9.50 0.0071  

Residual 0.0005 16 0.0005 
   

Lack of Fit 0.0004 11 0.0004 2.13 0.2078 not significant 
Pure Error 0.0001 5 0.0001 

   

Cor Total 0.0062 29 
    

R2 = 0.9159, Adjusted R2 = 0.8477, Predicted R2 = 0.8125 and Adeq. Precision = 22.0724 
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Table 5. ANOVA test for CR (gcm-2hr-1) of corrosion inhibition of mild steel in different HCl concentrations by OFL-ZnONPs 

Source Sum of Squares df Mean Square F-value p-value Verdict 

Model 0.1218 12 0.0101 35.19 < 0.0001 Significant 

A-A.C 4.844E-08 1 4.844E-08 3.22 0.04898 
 

B-IT 0.0000 1 0.0000 4.474 0.04256 
 

C-I.C 7.491E-06 1 7.491E-06 0.0260 0.8739 
 

D-T 0.0008 1 0.0008 16.72 0.02506 
 

AD 0.0006 1 0.0006 12.15 0.02814 
 

BC 0.0004 1 0.0004 9.93 0.0305 
 

CD 0.0002 1 0.0002 5.142 0.04102 
 

B² 0.0215 1 0.0215 74.73 < 0.0001 
 

D² 0.0010 1 0.0010 2.34 0.0854 
 

A²B 0.0066 1 0.0066 22.92 0.0002 
 

A²D 0.0003 1 0.0003 0.9335 0.3475 
 

A²B² 0.0011 1 0.0011 3.24 0.0489 
 

 
Table 6. ANOVA test for SC of corrosion inhibition of mild steel in different HCl concentrations by OFL-ZnONPs 

Source Sum of Squares df Mean Square F-value p-value Verdict 
Model 0.0490 14 0.0035 29.26 < 0.0001 Significant 
A-AC 0.0051 1 0.0051 42.30 < 0.0001 

 

B-IT 0.0006 1 0.0006 5.40 0.0346 
 

C-IC 0.0001 1 0.0001 0.8004 0.3851 
 

D-T 0.0004 1 0.0004 3.27 0.0908 
 

AB 0.0020 1 0.0020 16.54 0.0010 
 

AD 0.0008 1 0.0008 6.75 0.0202 
 

CD 0.0004 1 0.0004 3.27 0.0906 
 

D² 0.0108 1 0.0108 89.92 < 0.0001 
 

ABD 0.0007 1 0.0007 5.82 0.0291 
 

ACD 0.0008 1 0.0008 6.74 0.0202 
 

BCD 0.0026 1 0.0026 21.95 0.0003 
 

A²B 0.0009 1 0.0009 7.51 0.0152 
 

A²C 0.0018 1 0.0018 14.70 0.0016 
 

A²D 0.0070 1 0.0070 58.57 < 0.0001 
 

Residual 0.0018 15 0.0001 
   

Lack of Fit 0.0011 10 0.0001 0.8900 0.5924 Not significant 
Pure Error 0.0006 5 0.0001 

   

Cor Total 0.0508 29 
    

R2 = 0.9471, Adjusted R2 = 0.9117, Predicted R2 = 0.8142 and Adeq. Precision = 21.0623 

 

 
Figure 6. Proposed ANN Architecture 
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Table 7. ANOVA test for %IE of corrosion inhibition of mild steel in different HCl concentrations by OFL-ZnONP  
Source Sum of Squares df Mean Square F-value p-value Verdict 
Model 490.17 14 35.01 29.25 < 0.0001 Ssignificant 
A-AC 50.63 1 50.63 42.30 < 0.0001 

 

B-IT 6.46 1 6.46 5.40 0.0346 
 

C-I.C 0.9578 1 0.9578 0.8002 0.3852 
 

D-T 3.91 1 3.91 3.27 0.0908 
 

AB 19.80 1 19.80 16.54 0.0010 
 

AD 8.08 1 8.08 6.75 0.0202 
 

BD 26.27 1 26.27 21.95 0.0003 
 

CD 3.91 1 3.91 3.27 0.0906 
 

D² 107.61 1 107.61 89.90 < 0.0001 
 

ABD 6.96 1 6.96 5.82 0.0291 
 

ACD 8.07 1 8.07 6.74 0.0203 
 

A²B 8.99 1 8.99 7.51 0.0152 
 

A²C 17.60 1 17.60 14.70 0.0016 
 

A²D 70.10 1 70.10 58.56 < 0.0001 
 

Residual 17.95 15 1.20 
   

Lack of Fit 11.50 10 1.15 0.8902 0.5923 not significant 
Pure Error 6.46 5 1.29 

   

Cor Total 508.13 29 
    

R2 = 0.9647, Adjusted R2 = 0.9317, Predicted R2 = 0.8443 and Adeq. Precision = 23.0586 

 

                            

         
Figure 4. Numeral optimization of OFL-ZnONPs' mild steel corrosion inhibition effect at various responses.  
 

 
Figure 5. Plots of contrast between actual and predicted data to validate RSM modeling of mild steel corrosion inhibition by OFL-
ZnONPs for (a) WL (b) CR and (c) % IE 

 
 
 
 
 
 

(C) 
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Table 8. Comparison of diverse algorithms for prediction of corrosion inhibition of mild steel in 2.0 M HCl by OFL-ZnONPs 

7 

 

MSE Gradient Decent (GD)  

MSE 

Levenberg Marquet (LM)  

MSE 

Scaled Conjugate Gradient (SCG) 

Tr Val Test All Tr Val Test All Tr Val Test All 

4:1:4 5.41 0.9976 0.9912 0.9839 0.9933 0.64 0.9995 0.9954 0.9995 0.9987 5.30 0.9961 0.9974 0.9995 0.9967 

4:2:4 1.19 0.9969 0.9997 0.9975 0.9973 2.59 0.9973 0.9999 0.9999 0.9980 5.44 0.9964 0.9996 0.9946 0.9963 

4:4:4 9.66 0.9957 0.9947 0.9971 0.9953 5.90 0.9966 0.9966 0.9986 0.9968 2.10 0.9983 0.9986 0.9997 0.9985 

4:7:4 2.62 0.9965 0.9997 0.9981 0.9969 2.43 0.9982 0.9997 0.9999 0.9987 0.68 0.9998 0.9964 0.9995 0.9988 

4:9:4 2.54 0.9982 0.9994 0.9948 0.9978 2.20 0.9982 0.9983 0.9994 0.9984 0.61 0.9999 0.9963 0.9983 0.9985 

4:11:4 2.03 0.9986 0.9948 0.9986 0.9967 2.48 0.9984 0.9985 0.9999 0.9986 10.4 0.9967 0.9970 0.9986 0.9972 

4:13:4 1.46 0.9971 0.9958 0.9911 0.9957 2.25 0.9986 0.9996 0.9984 0.9986 20.1 0.9973 0.9996 0.9968 0.9971 

4:15:4 0.80 0.9990 0.9997 0.9961 0.9986 1.90 0.9987 0.9985 0.9986 0.9986 0.71 0.9995 0.9997 0.9945 0.9987 

Tr = training, Val = validation, and Top. = Topography 
 

 
Figure 7. Artificial Neural Network performance plot (a) and training plot (b)    
 

 
Figure 8. Artificial Neural Network regression plot for prediction corrosion inhibition of mild steel in different HCl concentrations 
by OFL-ZnONPs. 
 

 
Figure 9. Polarization curve for the corrosion inhibition of mild steel in the absence and presence of OFL-ZnONPs 
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Figure 10. Nyquist plot for the corrosion inhibition of mild steel in the absence and presence of OFL-ZnONPs 

 
Figure 11. Equivalent Circuit 
 
Table 9. Potentiodynamic Polarization Parameters for Corrosion Inhibition of Mild Steel in the Absence and Presence of OFL-
ZnONPs  

Inhibitors Conc. (g/l) βa (mVdec-1) βc (mVdec-1) Ecorr (mV) Icorr (µA) θPDP %IPDP 

  
Control 

172.14 169.6 303.43 386.65 - - 

OFL-ZnONPs 0.1 188.72 157.37 313.43 175.21 0.55 54.69 

0.2 192.43 184.2 328.27 139.34 0.64 63.96 

0.3 213.41 201.72 341.33 112.51 0.71 70.90 

0.4 217.62 217.32 378.23 97.43 0.75 74.80 

0.5 231.62 214.53 378.19 83.91 0.78 78.30 

        
Table 10. Electrochemical Impedance Spectroscopy Parameters for Corrosion Inhibition of Mild Steel in the Absence and Presence of 
OFL-ZnONPs 

Inhibitors Conc. (g/l) Rs 
(Ω/cm2) 

Rct 
(Ω/cm2) 

Cdl 
(μF/cm2) 

θEIS %IEIS 

  
Control 

0.91 3.04 8.33017E-05 - - 

OFL-ZnONPs 0.1 0.98 5.25 4.8236E-05 0.42 42.10 
0.2 1.05 7.58 3.3409E-05 0.60 59.89 
0.3 2.99 8.68 2.9175E-05 0.65 64.98 
0.4 4.01 10.34 2.4491E-05 0.71 70.60 
0.5 4.94 14.55 1.7405E-05 0.79 79.11 

 

       
Figure 12. SEM Micrograph of surfaces of mild steel: (a) abraded, (b) in 2.0 M HCl, (c) in the presence of 0.4 g of OFL - ZnONPs 
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architecture 4:9:4, with an MSE of 0.6053 and an R2 near unity. 
Regression analysis, illustrated in Figure 8, affirmed the significance 
of the association between experimental and ANN-predicted 
values. This indicates that the adoption of an ANN model facilitated 
accurate prediction of the corrosion inhibition of mild steel by OFL-
ZnONPs at various HCl concentrations. The performance of the 
ANN model, which is largely dependent on the MSE value, is 
illustrated in Figure 7a. Blue, green, and red express the various 
MSE values based on ANN modeling for training, validation, and 
testing, respectively. MSE illustrates the extent of correlation 
between the experimental and expected data. It is therefore 
convenient to observe that the MSE value approaches the line of 
best fit in proportion to its proximity to zero (Amodu et al., 2022). 
Therefore, at an epoch of 9, the least MSE for this investigation was 
found to be 0.60533. The ANN model's training plot is shown in 
Figure 7b. This expression accounts for rejection and levels of 
tolerance during model training at maximum neurons. Based on 
the input parameters as shown in the plot of Val (validity) fail and 
gradient vs epoch, the training algorithm's validity is deemed 
acceptable. As a result, epoch 15 was reached at the optimal training 
level of 9 neurons. Several researchers have additionally 
investigated using ANN to train smaller datasets (Amodu et al., 
2022; Santhosh et al., 2021)  
3.6 Electrochemical Investigation 
3.6.1 Tafel Plot via Potentiodynamic Polarization 
Tafel polarization curves were extrapolated for the corrosion 
inhibition of mild steel in 2.0 M with and without various 
concentrations of OFL-ZnONPs and the results are captured in 
Figure 9. At each level of OFL-ZnONPs concentrations, the curves 
navigate towards the region of lower current density in the presence 
of inhibitor compared to the control matrix (2.0 M HCl). This infers 
that the investigated inhibitor dwindled the corrosion current 
density and therefore, reduce the corrosion rate (Fouda et al., 2019; 
Lin et al., 2020). Similarly, the polarization curves also display some 
transition or shift in the potential towards more anodic or cathodic 
regions relative to the control sample. However, the transition is not 
even as it varies with the level of concentrations (Guo et al., 2020). 
This infers that the OFL-ZnONPs impact both the anodic and 
cathodic corrosion reactions. The kinetic parameters for the 
corrosion process in the absence and presence of different 
concentration of OFL-ZnONPs were gotten from the Tafel plots 
and presented in Table 9. It is conspicuous that the shift in Ecorr of 
the inhibitor constituting the corrosion matrix relative to the 
control is less than 85 mV. This means that the inhibitor under 
investigation might be a mixed-type inhibitor (Kravanja & Finšgar, 
2022; Murulana et al., 2016). In other words, OFL-ZnONPs 
mitigate both the anodic and cathodic reactions. However, the 
cathodic reaction in this context may be hydrogen gas evolution 
(2H+ + 2e- → H2O) and oxygen reduction (4H+ + O2 + 4e- → 2H2O), 

since, the experiment was carried out in aerated HCl niche. The 
disparity in the Ecorr has shown to be large with the maximum shift 
of about ±76 mV. This observation connotes that upon the addition 
of OFL-ZnONPs does not negatively affect the mild steel electrode 
surface (Obot & Edouk, 2017). Such transition in the Ecorr has been 
linked to geometric blocking of the active sites on the mild steel 
surface by OFL-ZnONPs molecules. In furtherance, the values the 
Tafel slopes, βa and βc change slightly with increase in 
concentration of inhibitor. However, the values of βa and βc of the 
control sample is less than those in the presence of inhibitor. This 
observation denotes the formation of inhibitor complexes of Fe in 
higher and lower oxidation states on the mild steel surface 
suggesting of more mitigating actions of the compounds on the 
anodic action than the cathodic axis (Quadri et al., 2022). The 
corrosion current density, Icorr declines with increase in the 
concentration of OFL-ZnONPs culminate to increase in inhibition 
efficiency (% IEPDP) (Akpan et al., 2019; Kumar et al., 2021).  
3.6.2 Nyquist Plot via Electrochemical Impedance Spectroscopy 
Nyquist plots were employed to derive more insight from the 
corrosion of mild steel in 2.0 M HCl in the presence absence and 
presence of different concentrations of OFL-ZnONPs is presented 
in Figure 10 and the electrochemical parameter is presented in 
Table 10. The display of the EIS spectra portrayed similar behaviour 
in the absence and presence of OFL-ZnONPs, explains that the 
corrosion inhibition potential of mild steel in acid by OFL-ZnONPs 
does not stampede the mechanism of the corrosion process (Ivušić 
et al., 2015; Rbaa et al., 2020). It was noticed as the concentration of 
OFL-ZnONPs increases; the uneven Nyquist semicircle also 
increased. This is attributed to frequency distribution effects that 
originate from roughness of the electrode surface and the corrosion 
of mild steel is controlled by charge transfer process (Bekmurzayeva 
et al., 2018; Umoren & Solomon, 2017). In furtherance, the Nyquist 
semicircles in the presence of OFL-ZnONPs is clearly larger than 
that in the absent of inhibitor. This connotes that the interaction of 
mild steel and electrolyte matrix exhibit higher level of impedance 
flow of charge in the presence of inhibitor (Fouda et al., 2019). 
However, the EIS spectra of the corrosion process were fitted to the 
equivalent circuit model as presented in Figure 11. The system 
constituting the inhibitor has higher Rct values than the control 
matrix, which entails that the resistance of interface between mild 
steel and electrolytes to the charge transfer process is propelled by 
the inhibitor molecules. This observation is linked to the formation 
of protective film of OFL-ZnONPs on the mild steel, which mitigate 
direct contact with the assaulted acid solution. Hence, the inhibitor 
has shown a reasonable value of % IEPDP, which correlates with the 
results obtained from the Tafel polarization assessment (Mohapatra 
et al., 2019; Swetha et al., 2019).  
3.7 Surface Morphology Detection 
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The surface topology of the metal surface void of inhibitor and 
presence of inhibitor molecules in the corrosion matrix is presented 
in Figure 12. The abraded metal surface showed a mirror image 
without scratch (Figure 12a). Figure 12b showed metal surface void 
of inhibitor with clear pits due to the attack caused by assaulted HCl 
solution. Whereas, the presence of inhibitor, the metal surface 
showed a pit free morphology which is attributed to formation of 
inhibited layer of the nanoparticles on the metal surface (Figure 
12c). However, the layer of nanoparticles formed might have 
stampeded the penetration of Cl- ions into the metal surface. These 
surface topology results are in good correlation with weight loss and 
electrochemical data insinuating that OFL-ZnONPs molecules are 
excellent adsorbent on the surface of mild steel.  
 
4. Conclusion  
This study implemented RSM and ANN to model and optimize the 
corrosion inhibition of mild steel in various HCl concentrations 
through the gravimetric method. The zinc oxide nanoparticles that 
were biosynthesized from OFL were found to be highly effective in 
preventing the corrosion of mild steel. It has been demonstrated 
that as the inhibitor concentration rises over time, and weight loss 
reduces. Subsequently, the rate of corrosion increased with 
temperature; however, the rate of corrosion was significantly 
knocked down by an increase in inhibitor concentration. Moreover, 
a significant rise in the inhibitor concentration was seen in the 
surface coverage and % inhibition efficiency. At experiment run 7, 
the optimal factors of AC = 2M, IT = 4.75hr, IC = 0.4g/L, and 
324.5K were achieved, making these process parameters ideal for 
modeling the corrosion inhibition of mild steel. Tafel polarization 
suggested that the investigated nanoparticles behaved like as a 
mixed-type inhibitor. The SEM results portrayed the adsorption 
and formation of film on the mild steel surface. Furthermore, using 
ANN to optimize and predict mild steel corrosion in HCl 
demonstrated an MSE value of 0.6053 and that the optimum 
number of neurons was 9 at epoch 9. In the comparison of the RSM 
and ANN model performances for this study, the ANN represents 
a superior optimization tool with a higher R2 value solely due to its 
algorithm's ability to adapt, learn, and train datasets at a quantized 
0.1 learning rate. All things considered, RSM and ANN have 
demonstrated evident adaptability for modeling and optimization, 
as seen by their conspicuous R2 values of greater than 90 %.    
 

Author contributions 

A.E. formulated the study objectives, constructed the hypotheses, 
and revised the manuscript. U.S. conducted the literature review. 
P.A.E. was responsible for data collection, and V.O.A. analyzed the 
data. All authors reviewed and approved the final manuscript. 
 
 

Acknowledgment  

Author was grateful to their department.  
 

Competing financial interests  

The authors have no conflict of interest. 
 

References 

Abdallah, M., Altass, H. M., Al Jahdaly, B., & Salem, M. (2018). Some natural aqueous 

extracts of plants as green inhibitor for carbon steel corrosion in 0.5 M sulfuric 

acid. Green chemistry letters and reviews, 11(3), 189-196.  

Abdelaziz, S., Benamira, M., Messaadia, L., Boughoues, Y., Lahmar, H., & Boudjerda, A. 

(2021). Green corrosion inhibition of mild steel in HCl medium using leaves 

extract of Arbutus unedo L. plant: An experimental and computational approach. 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 619, 

126496.  

Akinbulumo, O. A., Odejobi, O. J., & Odekanle, E. L. (2020). Thermodynamics and adsorption 

study of the corrosion inhibition of mild steel by Euphorbia heterophylla L. extract 

in 1.5 M HCl. Results in Materials, 5, 100074.  

Akpan, E. D., Isaac, I. O., Olasunkanmi, L. O., Ebenso, E. E., & Sherif, E.-S. M. (2019). Acridine-

based thiosemicarbazones as novel inhibitors of mild steel corrosion in 1 M HCl: 

synthesis, electrochemical, DFT and Monte Carlo simulation studies. RSC 

advances, 9(51), 29590-29599.  

Alamri, A. H. (2022). Application of machine learning to stress corrosion cracking risk 

assessment. Egyptian Journal of Petroleum, 31(4), 11-21.  

Al-Senani, G. M. (2020). Synthesis of ZnO-NPs using a Convolvulus arvensis leaf extract and 

proving its efficiency as an inhibitor of carbon steel corrosion. Materials, 13(4), 

890.  

Amodu, O. S., Odunlami, M. O., Akintola, J. T., Ojumu, T. V., & Ayanda, O. S. (2022). Artificial 

neural network and response surface methodology for optimization of corrosion 

inhibition of mild steel in 1 M HCl by Musa paradisiaca peel extract. Heliyon, 

8(12).  

Ansari, A., Ou-Ani, O., Oucheikh, L., Youssefi, Y., Chebabe, D., Oubair, A., & Znini, M. (2022). 

Experimental, Theoretical Modeling and Optimization of Inhibitive Action of 

Ocimum Basilicum Essential Oil as Green Corrosion Inhibitor for C38 Steel in 0.5 

MH 2 SO 4 Medium. Chemistry Africa, 1-19.  

Awe, F., Idris, S., Abdulwahab, M., & Oguzie, E. (2015). Theoretical and experimental 

inhibitive properties of mild steel in HCl by ethanolic extract of Boscia 

senegalensis. Cogent Chemistry, 1(1), 1112676.  

Bekmurzayeva, A., Duncanson, W. J., Azevedo, H. S., & Kanayeva, D. (2018). Surface 

modification of stainless steel for biomedical applications: Revisiting a century-

old material. Materials Science and Engineering: C, 93, 1073-1089.  

Emembolu, L. N., Ohale, P. E., Onu, C. E., & Ohale, N. J. (2022). Comparison of RSM and 

ANFIS modeling techniques in corrosion inhibition studies of Aspilia Africana leaf 

extract on mild steel and aluminium metal in acidic medium. Applied Surface 

Science Advances, 11, 100316.  

Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Wajidullah, 

& Akhtar, N. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using 

aqueous fruit extracts of Myristica fragrans: their characterizations and 

biological and environmental applications. ACS omega, 6(14), 9709-9722.  



BIOSENSORS & NANOTHERANOSTICS                RESEARCH 
 

https://doi.org/10.25163/biosensors.317339                                                                                             1–17 | BIOSENSORS & NANO | Published online Mar 30, 2024 
 

Fakhari, S., Jamzad, M., & Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: 

a comparison. Green chemistry letters and reviews, 12(1), 19-24.  

Farooq, A., Khan, U. A., Ali, H., Sathish, M., Naqvi, S. A. H., Iqbal, S., Ali, H., Mubeen, I., Amir, 

M. B., & Mosa, W. F. (2022). Green chemistry based synthesis of zinc oxide 

nanoparticles using plant derivatives of Calotropis gigantea (Giant Milkweed) 

and its biological applications against various bacterial and fungal pathogens. 

Microorganisms, 10(11), 2195.  

Fouda, A. S., Ismail, M. A., Temraz, A. M., & Abousalem, A. S. (2019). Comprehensive 

investigations on the action of cationic terthiophene and bithiophene as 

corrosion inhibitors: experimental and theoretical studies. New Journal of 

Chemistry, 43(2), 768-789.  

Gadekar, M. R., & Ahammed, M. M. (2019). Modelling dye removal by adsorption onto water 

treatment residuals using combined response surface methodology-artificial 

neural network approach. Journal of environmental management, 231, 241-

248.  

Garba, Z. N., Ugbaga, N. I., & Abdullahi, A. K. (2016). Evaluation of optimum adsorption 

conditions for Ni (II) and Cd (II) removal from aqueous solution by modified 

plantain peels (MPP). Beni-Suef University Journal of Basic and Applied 

Sciences, 5(2), 170-179.  

Guo, W., Umar, A., Zhao, Q., Alsaiari, M. A., Al-Hadeethi, Y., Wang, L., & Pei, M. (2020). 

Corrosion inhibition of carbon steel by three kinds of expired cephalosporins in 

0.1 M H2SO4. Journal of Molecular Liquids, 320, 114295.  

Haladu, S. A., Mu'azu, N. D., Ali, S. A., Elsharif, A. M., Odewunmi, N. A., & Abd El-Lateef, H. 

M. (2022). Inhibition of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 

1, 6-hexyldiyl-bis-(dimethyldodecylammonium bromide): ANN, RSM predictive 

modeling, quantum chemical and MD simulation studies. Journal of Molecular 

Liquids, 350, 118533.  

Ivušić, F., Lahodny-Šarc, O., Ćurković, H. O., & Alar, V. (2015). Synergistic inhibition of carbon 

steel corrosion in seawater by cerium chloride and sodium gluconate. Corrosion 

Science, 98, 88-97.  

Jain, P., Patidar, B., & Bhawsar, J. (2020). Potential of nanoparticles as a corrosion inhibitor: 

a review. Journal of Bio-and Tribo-Corrosion, 6, 1-12.  

Jayachandran, A., Aswathy, T., & Nair, A. S. (2021). Green synthesis and characterization of 

zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and 

Biophysics Reports, 26, 100995.  

Jokar, M., Farahani, T. S., & Ramezanzadeh, B. (2016). Electrochemical and surface 

characterizations of morus alba pendula leaves extract (MAPLE) as a green 

corrosion inhibitor for steel in 1 M HCl. Journal of the Taiwan Institute of 

Chemical Engineers, 63, 436-452.  

Kravanja, K. A., & Finšgar, M. (2022). A review of techniques for the application of bioactive 

coatings on metal-based implants to achieve controlled release of active 

ingredients. Materials & Design, 217, 110653.  

Kumar, H., Karthikeyan, S., Vivekanand, P., & Kamaraj, P. (2021). The inhibitive effect of 

cloxacillin on mild steel corrosion in 2 N Sulphuric acid medium. Materials 

Today: Proceedings, 36, 898-902.  

Lin, B., Zheng, S., Liu, J., & Xu, Y. (2020). Corrosion inhibition effect of cefotaxime sodium on 

mild steel in acidic and neutral media. International Journal of Electrochemical 

Science, 15(3), 2335-2353.  

Mohapatra, R. K., Das, P. K., Pradhan, M. K., El-Ajaily, M. M., Das, D., Salem, H. F., Mahanta, 

U., Badhei, G., Parhi, P. K., & Maihub, A. A. (2019). Recent advances in urea-

and thiourea-based metal complexes: biological, sensor, optical, and corroson 

inhibition studies. Comments on Inorganic Chemistry, 39(3), 127-187.  

Murulana, L. C., Kabanda, M. M., & Ebenso, E. E. (2016). Investigation of the adsorption 

characteristics of some selected sulphonamide derivatives as corrosion 

inhibitors at mild steel/hydrochloric acid interface: Experimental, quantum 

chemical and QSAR studies. Journal of Molecular Liquids, 215, 763-779.  

Obot, I., & Edouk, U. M. (2017). Benzimidazole: Small planar molecule with diverse anti-

corrosion potentials. Journal of Molecular Liquids, 246, 66-90.  

Ogunleye, O., Arinkoola, A., Eletta, O., Agbede, O., Osho, Y., Morakinyo, A., & Hamed, J. 

(2020). Green corrosion inhibition and adsorption characteristics of Luffa 

cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon, 

6(1).  

Olawale, O., Bello, J., & Akinbami, P. (2015). A study on corrosion inhibitor of mild-steel in 

hydrochloric acid using cashew waste. International Journal of Modern 

Engineering Research, 5(8), 25-30.  

Olawale, O., Bello, J., Ogunsemi, B., Uchella, U., Oluyori, A., & Oladejo, N. (2019). 

Optimization of chicken nail extracts as corrosion inhibitor on mild steel in 2M 

H2SO4. Heliyon, 5(11).  

Olivieri, F., Castaldo, R., Cocca, M., Gentile, G., & Lavorgna, M. (2021). Mesoporous silica 

nanoparticles as carriers of active agents for smart anticorrosive organic 

coatings: a critical review. Nanoscale, 13(20), 9091-9111.  

Onukwuli, O., & Omotioma, M. (2016). Optimization of the inhibition efficiency of mango 

extract as corrosion inhibitor of mild steel in 1.0 M H2SO4 using response 

surface methodology. Journal of Chemical Technology and Metallurgy, 51(3), 

302-314.  

Oyewole, O., Adeoye, J. B., Udoh, V. C., & Oshin, T. A. (2023). Optimization and corrosion 

inhibition of Palm kernel leaves on mild steel in oil and gas applications. Egyptian 

Journal of Petroleum, 32(1), 41-46.  

Quadri, T. W., Olasunkanmi, L. O., Akpan, E. D., Fayemi, O. E., Lee, H.-S., Lgaz, H., Verma, C., 

Guo, L., Kaya, S., & Ebenso, E. E. (2022). Development of QSAR-based 

(MLR/ANN) predictive models for effective design of pyridazine corrosion 

inhibitors. Materials Today Communications, 30, 103163.  

Rahman, F., Majed Patwary, M. A., Bakar Siddique, M. A., Bashar, M. S., Haque, M. A., Akter, 

B., Rashid, R., Haque, M. A., & Royhan Uddin, A. (2022). Green synthesis of zinc 

oxide nanoparticles using Cocos nucifera leaf extract: Characterization, 

antimicrobial, antioxidant and photocatalytic activity. Royal Society Open 

Science, 9(11), 220858.  

Rbaa, M., Abousalem, A. S., Rouifi, Z., Lakhrissi, L., Galai, M., Zarrouk, A., Lakhrissi, B., & 

Lakhrissi, Y. (2020). Selective synthesis of new sugars based on 8-

hydroxyquinoline as corrosion inhibitors for mild steel in HCl solution-effect of 

the saturated hydrocarbon chain: Theoretical and experimental studies. 

Inorganic Chemistry Communications, 118, 108019.  

Rehioui, M., Abbout, S., Benzidia, B., Hammouch, H., Erramli, H., Daoud, N. A., Badrane, N., 

& Hajjaji, N. (2021). Corrosion inhibiting effect of a green formulation based on 

Opuntia Dillenii seed oil for iron in acid rain solution. Heliyon, 7(4).  



BIOSENSORS & NANOTHERANOSTICS                RESEARCH 
 

https://doi.org/10.25163/biosensors.317339                                                                                             1–17 | BIOSENSORS & NANO | Published online Mar 30, 2024 
 

Salam, H. A., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of 

zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-

Lamiaceae leaf extract. Materials letters, 131, 16-18.  

Salih, A. M., Al-Qurainy, F., Khan, S., Tarroum, M., Nadeem, M., Shaikhaldein, H. O., Gaafar, 

A.-R. Z., & Alfarraj, N. S. (2021). Biosynthesis of zinc oxide nanoparticles using 

Phoenix dactylifera and their effect on biomass and phytochemical compounds 

in Juniperus procera. Scientific Reports, 11(1), 19136.  

Santhosh, A. J., Tura, A. D., Jiregna, I. T., Gemechu, W. F., Ashok, N., & Ponnusamy, M. 

(2021). Optimization of CNC turning parameters using face centred CCD 

approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel. Results 

in Engineering, 11, 100251.  

Shahini, M., Taheri, N., Mohammadloo, H. E., & Ramezanzadeh, B. (2021). A comprehensive 

overview of nano and micro carriers aiming at curtailing corrosion progression. 

Journal of the Taiwan Institute of Chemical Engineers, 126, 252-269.  

Suarez-Hernandez, R., G. Gonzalez-Rodriguez, J., F. Dominguez-Patiño, G., & Martinez-

Villafañe, A. (2014). Use of Opuntia ficus extract as a corrosion inhibitor for 

carbon steel in acidic media. Anti-Corrosion Methods and Materials, 61(4), 224-

231.  

Swetha, G., Sachin, H., Guruprasad, A., & Prasanna, B. (2019). Rizatriptan Benzoate as 

corrosion inhibitor for mild steel in acidic corrosive medium: experimental and 

theoretical analysis. Journal of Failure Analysis and Prevention, 19, 1113-1126.  

Thiruvoth, D. D., & Ananthkumar, M. (2022). Evaluation of cerium oxide nanoparticle coating 

as corrosion inhibitor for mild steel. Materials Today: Proceedings, 49, 2007-

2012.  

Udunwa, D. I., Onukwuli, O. D., Menkiti, M. C., Anadebe, V. C., & Chidiebere, M. A. (2023). 1-

Butyl-3-methylimidazolium methane sulfonate ionic liquid corrosion inhibitor for 

mild steel alloy: Experimental, optimization and theoretical studies. Heliyon.  

Umoren, S. A., & Solomon, M. M. (2017). Synergistic corrosion inhibition effect of metal 

cations and mixtures of organic compounds: a review. Journal of Environmental 

Chemical Engineering, 5(1), 246-273. 

 

 

 

 

 

 

 

 

 

 

 

 


