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Abstract 
Millions of individuals worldwide face mobility 

impairments and rely on wheelchairs for assistance. Yet a 

significant portion of individuals with severe motor 

disabilities or insufficient familiarity with conventional 

interfaces cannot consider powered wheelchairs as a 

viable solution. Neurocybernetics present a promising 

solution to this challenge. Neurocybernetics involves 

exploring how the nervous system interacts with systems, 

like computers and robots. Through the use of interfaces 

users can control wheelchairs using neural signals from 

their brains making navigation more intuitive and 

effective. Assistive technologies, especially robotic 

wheelchairs powered by sensors and control systems, are 

essential for those disabled people, with mobility issues, to 

live more independently and better lives in their daily life 

even without the assistance of others. The primary 

objective of this study is to improve the quality of life for 

individuals with disabilities who depend on such 

assistance for their mobility requirements. This article 

examines some of the cutting-edge neurocybernetic 

devices that assist people with disabilities, such as brain-

computer interfaces (BCIs), algorithms to understand 

brain signals, and adaptive control methods for 

wheelchairs. This study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proposes a robotic wheelchair which utilizes the human 

brain signal and undergoes machine learning based 

classification model with neuromorphic adaptive control. 

It discusses the key considerations, difficulties, and 

potential uses of neurocybernetic robotic wheelchairs in 

real life situations. Additionally, it addresses the ethical, 

legal, and societal implications of using these 

technologies and suggests future research areas to 

advance their creation and use. 

Keywords: Neurocybernetics, Robotic Wheelchairs. Brain-Computer 

Interfaces, Assistive Technologies, Mobility Impairments. 

 

 

Introduction 

Mobility impairments affect millions of people globally, many of 
whom rely on wheelchairs to maintain their independence and 
quality of life. However, a significant proportion of individuals with 
severe motor disabilities or unfamiliarity with conventional 
powered wheelchair interfaces find themselves excluded from the 
benefits of these technologies. According to the World Health 
Organization (2024), around 75 million people worldwide require 
wheelchairs, but only 5-15% have access to them, reflecting a critical 
gap in providing mobility assistance to those in need. In this 
context, advancements in assistive technologies are crucial to 
address the limitations of traditional mobility aids and meet the 
diverse needs of users (Morbidi et al., 2022). 
Conventional wheelchairs have been the cornerstone of mobility 
assistance for individuals with impairments, yet they come with 
limitations. Over the past few decades, researchers have made 
significant strides in developing powered robotic wheelchairs that 
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offer enhanced mobility solutions through automation and sensor-
based control systems (How, Wang, & Mihailidis, 2013; 
Viswanathan et al., 2017). These wheelchairs integrate sensors, 
control algorithms, and robotic engineering to facilitate safer and 
more autonomous navigation for users. However, users with severe 
physical impairments often face challenges in controlling even these 
advanced systems due to limitations in motor function (Kutbi et al., 
2020; Candiotti et al., 2019). As a result, there has been a growing 
interest in neurocybernetic assistive technologies, which directly 
bridge the gap between a user’s neural activity and robotic control, 
bypassing the need for traditional interfaces like joysticks or 
touchpads (Rebsamen et al., 2010; Wolpaw & Wolpaw, 2012). 
Neurocybernetics, an interdisciplinary field combining 
neuroscience, cybernetics, and artificial intelligence, offers a 
revolutionary approach to assistive technologies by leveraging 
brain-computer interfaces (BCIs). These interfaces enable direct 
communication between the brain and external devices, such as 
robotic wheelchairs, allowing users to control movements with 
their neural signals (Sinyukov et al., 2014; Ata, 2021). BCIs utilize 
electroencephalography (EEG) to capture neural activity from the 
brain, process the signals using machine learning algorithms, and 
convert them into actionable commands for the wheelchair (Ezeh 
et al., 2017; Ngo & Nguyen, 2022). The advantages of 
neurocybernetic systems include more intuitive control, faster 
response times, and reduced cognitive load, making them 
particularly suitable for users with limited physical capabilities 
(Carlson & Demiris, 2012; Erdogan & Argall, 2017). 
The integration of neurocybernetics with assistive robotics has 
opened new possibilities for improving the independence and 
quality of life for individuals with disabilities. While previous 
studies have explored various aspects of robotic wheelchairs, 
including safety, ergonomics, and usability (Morales et al., 2018; 
Vailland et al., 2021), this paper focuses on a novel neurocybernetic 
model that utilizes advanced BCIs, signal processing, and adaptive 
control techniques. Specifically, it proposes a machine-learning-
based classification system to interpret neural signals and optimize 
wheelchair navigation based on real-time feedback and user 
preferences (Li et al., 2017; Delmas et al., 2021). Additionally, the 
study highlights the ethical, legal, and societal implications of 
neurocybernetic technologies, recognizing the importance of 
addressing concerns about user privacy, consent, and data security 
(Teodorescu et al., 2021). 
This study aims to present a comprehensive overview of the current 
state of neurocybernetic assistive technologies, focusing on their 
application in robotic wheelchairs. By discussing the principles, 
challenges, and future prospects of these systems, this study 
contributes to the growing body of research on how 
neurocybernetics can revolutionize mobility assistance. 
Furthermore, it emphasizes the need for continued 

interdisciplinary collaboration between neuroscientists, engineers, 
and healthcare professionals to refine these technologies and make 
them more accessible to those in need (Jeong et al., 2024; Ghezala, 
Sentouh, & Pudlo, 2022). 
 
Materials and Methods 
Study Design 
This study involves the design, implementation, and evaluation of 
a neurocybernetic robotic wheelchair system aimed at improving 
mobility for individuals with disabilities. The system integrates 
neural signal acquisition, processing, and adaptive control to allow 
users to navigate a wheelchair using brain-computer interface (BCI) 
technology. The experimental framework was divided into five key 
stages: neural signal acquisition, signal processing, feature 
extraction, adaptive control, and system integration. All 
experiments were conducted in compliance with ethical guidelines, 
and informed consent was obtained from all participants (Morbidi 
et al., 2022). 
1. Neural Signal Acquisition 
The neural signals required for controlling the robotic wheelchair 
were acquired using non-invasive Electroencephalogram (EEG) 
technology. The signal acquisition process involved the following 
steps: 
1.1. Electrode Placement: 
EEG electrodes were attached to the participant's scalp, particularly 
in areas responsible for motor functions and spatial awareness (e.g., 
motor cortex). The electrode configuration followed the 
international 10-20 system, which ensures accurate brain signal 
acquisition from motor-related regions (How et al., 2013). 
1.2. Electrode Type and Configuration: 
High-density silver chloride (AgCl) electrodes were used for EEG 
signal collection due to their sensitivity and compatibility with 
motor imagery tasks. For optimal signal acquisition, conductive gel 
was applied to reduce impedance at the electrode-skin interface. 
EEG signals were recorded at a sampling rate of 500 Hz with an 8-
channel EEG system (Wolpaw & Wolpaw, 2012). 
1.3. Signal Amplification and Filtering: 
EEG signals were amplified using a 16-bit bio-amplifier with a gain 
of 1000x to ensure accurate signal detection. Filtering techniques 
such as band-pass filtering (0.5 Hz – 100 Hz) were applied to reduce 
noise and isolate the relevant frequency bands associated with 
motor imagery, specifically the mu (8–12 Hz) and beta (18–26 Hz) 
rhythms (Morales et al., 2018; Sumikura et al., 2019; Ata, 2021). 
2. Signal Processing and Feature Extraction 
Once the neural signals were acquired, signal processing algorithms 
were implemented to extract meaningful features associated with 
user intent (Kutbi et al., 2020; Devigne et al., 2022; Li et al., 2017). 
2.1. Preprocessing: 
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The raw EEG data underwent artifact removal to eliminate noise 
from eye blinks, muscle movements, and other non-neural sources. 
Independent component analysis (ICA) was used to separate the 
noise components from the signal, and a notch filter was applied to 
remove power line interference (50 Hz) (Ezeh et al., 2017; Ngo & 
Nguyen, 2022; Ata, 2021). 
2.2. Feature Extraction: 
Key features were extracted from the preprocessed signals, 
including spectral power in the mu and beta bands, which are 
indicative of motor imagery. Time-frequency analysis was 
performed using wavelet transforms to capture the dynamic nature 
of brain activity during wheelchair navigation tasks (Benevides et 
al., 2011; Podobnik et al., 2017; Wolpaw & Wolpaw, 2012). 
2.3. Dimensionality Reduction: 
Principal component analysis (PCA) was employed to reduce the 
dimensionality of the EEG data while preserving the most 
significant features. This step ensured computational efficiency and 
improved classification accuracy by minimizing irrelevant 
information (Jeong et al., 2024; de Almeida Afonso & Ferreira Jr, 
2023; Candiotti et al., 2019). 
3. Classification and Control 
3.1. Machine Learning Model: 
A machine learning classification model was trained to interpret the 
extracted EEG features and translate them into control commands 
for the robotic wheelchair. For this study, a Support Vector 
Machine (SVM) algorithm was used due to its robustness in 
handling high-dimensional data (Candiotti et al., 2019; Kutbi et al., 
2020). The SVM was trained on labeled EEG data from motor 
imagery tasks (e.g., imagining left or right hand movements) to 
predict directional commands for the wheelchair (Rebsamen et al., 
2010; Ata, 2021). 
3.2. Model Validation: 
The classification accuracy was validated using a 10-fold cross-
validation approach (Li et al., 2017). Accuracy, precision, recall, and 
F1 score were calculated to evaluate the model's performance 
(Morbidi et al., 2022; Carlson & Demiris, 2012). A threshold of 85% 
accuracy was set as the minimum standard for reliable wheelchair 
control (Ngo & Nguyen, 2022). 
4. Adaptive Control Mechanism 
The control system incorporated real-time feedback and adaptive 
learning algorithms to ensure smooth navigation and user-specific 
adjustments (How et al., 2013; Teodorescu et al., 2021). 
4.1. Adaptive Learning: 
A reinforcement learning algorithm (Q-learning) was employed to 
allow the wheelchair to adapt to the user’s preferences over time 
(Morales et al., 2018). The system continuously updated control 
parameters (e.g., speed, acceleration) based on user feedback and 
environmental interactions (Erdogan & Argall, 2017). Feedback 

was provided to the user via a graphical interface showing real-time 
updates on the wheelchair's position and status.  
4.2. Real-Time Feedback and Calibration: 
The system was calibrated for each user to ensure optimal 
performance. Calibration involved adjusting the sensitivity of the 
control commands based on the user's brain activity during initial 
test sessions. Real-time feedback through visual displays and audio 
signals allowed the user to adjust their mental focus and improve 
the accuracy of commands (Jeong et al., 2024). 
5. Robotic Wheelchair Integration 
5.1. Hardware: 
The robotic wheelchair was equipped with a custom-built control 
unit that interfaced with the BCI system. The wheelchair had 
motorized wheels with variable speed control and obstacle 
detection sensors to assist in navigation. An embedded 
microcontroller processed the control commands from the BCI and 
executed appropriate movements (Delmas et al., 2023). 
5.2. Software Integration: 
The control software was developed in Python using the OpenBCI 
library for EEG data acquisition and signal processing. The control 
commands generated by the machine learning model were 
translated into motor control signals, which were sent to the 
wheelchair via a wireless connection (Podobnik et al., 2017). 
6. Testing Environment 
The experimental setup was tested in both simulated and real-world 
environments. Participants were first introduced to the system in a 
virtual simulation to familiarize themselves with the BCI-
wheelchair interface. Afterward, real-world trials were conducted in 
an indoor obstacle course to evaluate the system's performance in 
navigating complex environments. The participants' performance, 
ease of use, and mental workload were assessed through self-
reported questionnaires and observational analysis (Leblong et al., 
2021). 
Statistical Analysis 
Data from the EEG signal classification, user feedback, and 
wheelchair navigation performance were analyzed using statistical 
software (SPSS v.26). A paired t-test was performed to compare pre- 
and post-intervention results, evaluating the improvement in 
control accuracy and user satisfaction. P-values less than 0.05 were 
considered statistically significant. 
 
Results and Discussion 
The proposed Neurocybernetic Assistive Model for Robotic 
Wheelchair Navigation introduces a novel approach to mobility 
assistance by leveraging brain-computer interfaces (BCIs) and 
advanced neurocybernetic technologies. The model presents a 
robust solution for individuals with limited physical abilities, 
offering them a direct way to control wheelchair movement 
through neural signals Wu et al., 2018. 
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1. Neural Signal Acquisition 
The initial stage in the neurocybernetic process involves acquiring 
neural signals from the user's brain using Electroencephalogram 
(EEG) electrodes placed on the scalp. These electrodes capture 
brain activity related to movement and spatial navigation (Ngo., 
2022). The placement and configuration of electrodes are crucial, as 
they ensure the signals accurately reflect the user's intent for 
controlling the wheelchair. For this study, standard EEG 
configurations like steady-state visual evoked potentials (SSVEPs) 
and event-related potentials (ERPs) were tested. These 
configurations effectively captured signals linked to motor imagery, 
which allowed users to control directional movements and stop 
commands through thought alone (Ata et al., 2021). 
2. Signal Processing & Feature Extraction 
The second phase focuses on enhancing and interpreting the neural 
signals using advanced algorithms. Filtering techniques such as 
linear filtering and spatial filtering were employed to reduce noise 
and emphasize important brain patterns, ensuring the system 
reliably decodes user intentions (De Almeida Afonso., 2023). Signal 
processing techniques extracted essential features from neural data, 
specifically those related to intended movement, such as spectral 
power and spatial coherence between brain regions. Using Principal 
Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA), the system reduced dimensionality, which enabled the 
classifiers to quickly and accurately interpret the user's commands 
(Benevides., 2011). 
3. Classification & Command Generation 
The extracted features were classified using a variety of machine 
learning algorithms, including Support Vector Machines (SVMs), 
Random Forests, and Neural Networks, to interpret neural patterns 
into actionable wheelchair commands. The classifiers 
demonstrated high accuracy in distinguishing user intents, allowing 
for smooth and reliable control of the robotic wheelchair. One 
particularly successful method was the integration of a Genetic 
Algorithm Back Propagation Neural Network (GA-BPNN), which 
proved efficient in classifying neural data for real-time command 
generation (Ghezala et al., 2022). 
4. Adaptive Control 
The adaptive control mechanisms were a crucial component of the 
system's success, as they allowed the wheelchair to continuously 
adjust to the user's unique driving style and preferences. Algorithms 
such as Reinforcement Learning (RL) and Online Learning 
dynamically updated the wheelchair's control parameters based on 
real-time user feedback, improving response times and reducing the 
cognitive burden on users. By incorporating Bayesian Optimization 
and Meta-Learning, the system fine-tuned control settings to 
ensure the highest levels of performance, comfort, and safety. The 
results showed that the adaptive control algorithms significantly 

enhanced the user experience by allowing for smoother navigation 
and a more intuitive control mechanism (Del Castillo., 2012). 
5. Real-time Feedback & User Interaction 
One of the most significant advantages of the neurocybernetic 
model was its provision of real-time feedback to the user. Through 
visual, auditory, or vibrational feedback mechanisms, users were 
constantly informed of the wheelchair's status, enabling them to 
adjust their navigation inputs accordingly. This feedback system 
played a crucial role in ensuring safe and precise movement, 
particularly in complex environments like crowded areas or narrow 
pathways. The ability to receive immediate updates on the 
wheelchair's movement allowed users to feel more confident and in 
control (Rebsamen., 2010). 
6. Calibration & Validation 
Extensive testing and calibration ensured that the system accurately 
translated brain signals into wheelchair control commands. 
Calibration steps involved fine-tuning the neural signal acquisition 
and control interfaces, ensuring that the wheelchair responded 
accurately and consistently to user commands. Validation trials 
demonstrated a marked improvement in navigation accuracy, 
responsiveness, and overall user satisfaction (Carlsonw., 2012). 
 
Challenges & Opportunities 
Despite significant advancements in neurocybernetic robotic 
wheelchairs, challenges remain in signal accuracy and system 
robustness. Noise interference, imprecise decoding of neural 
signals, and variations in user brain patterns posed difficulties 
during initial phases. However, improvements in signal processing 
algorithms and adaptive control systems mitigated these issues, 
making the system more reliable in real-world scenarios (Welpaw., 
2012). 
Ethical considerations were also discussed, particularly the need to 
protect user privacy and ensure the safe use of neural data. 
Additionally, there are concerns about the accessibility and 
affordability of such advanced assistive technologies for a broader 
population. Future research should focus on reducing the cost of 
neurocybernetic systems while improving their ease of use. 
 
Future Research Directions 
Ongoing research is critical to enhance the effectiveness of 
neurocybernetic wheelchair models. Long-term studies will provide 
valuable insights into how the system affects users' daily lives and 
overall well-being. Continued collaboration between 
neuroscientists, engineers, and healthcare professionals will drive 
innovations in assistive technology, allowing people with 
disabilities to experience greater independence and a better quality 
of life. 
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Conclusion  
Neurocybernetic robotic wheelchairs offer a groundbreaking 
solution for individuals with mobility impairments, providing 
greater autonomy and control through brain signal integration. By 
leveraging advanced neural signal processing and adaptive control 
algorithms, these wheelchairs enable intuitive navigation without 
manual input. Despite significant progress, challenges such as 
signal noise, decoding accuracy, and ethical concerns regarding 
privacy remain. Continued research and collaboration between 
neuroscience, robotics, and assistive technology are essential to 
refine this model. Long-term studies and user feedback will further 
enhance its efficacy, paving the way for more widespread adoption, 
ultimately improving the quality of life for wheelchair users. 
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