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Abstract 12 
Background: Despite existing treatments, the prevalence of Type 2 diabetes mellitus (T2D) continues to rise globally, 13 
underscoring the need for novel therapeutic strategies. Medicinal plants like Tinospora cordifolia have shown potential in 14 
traditional medicine for managing various ailments, including diabetes. This study investigates the antidiabetic potential of 15 
T. cordifolia phytochemicals by targeting dipeptidyl peptidase-4 (DPP-4), a key enzyme in glucose metabolism. Methods:16 
A library of 141 bioactive compounds from T. cordifolia was compiled and their structures retrieved from PubChem. 17 
Ligand preparation was conducted using the Schrödinger Suite, and the crystallographic structure of DPP-4 (PDB ID: 18 
2HHA) was prepared for docking. Molecular docking, pharmacophore modeling, MM/GBSA binding energy calculations, 19 
and QSAR modeling were performed to assess binding affinities and predict inhibitory activities. Additionally, the QSAR-20 
Toxicity Estimation Software Tool (TEST) was used to evaluate the toxicity profiles of the hit compounds. Results: 21 
Molecular docking revealed that five T. cordifolia compounds exhibited higher binding affinities than the standard drug 22 
rosiglitazone, with saponarin showing the highest affinity (-10.40 kcal/mol). MM/GBSA calculations confirmed favorable 23 
binding free energies, with saponarin exhibiting a ΔG_bind of -44.22 kcal/mol. QSAR modeling predicted that saponarin, 24 
astragalin, and tinosinenside had better pIC50 values (5.593 µM, 5.593 µM, and 5.659 µM, respectively) than rosiglitazone 25 
(5.059 µM). Pharmacophore modeling identified tinosinenside as having the highest fitness score (0.942). Toxicity 26 
assessment indicated that while tinosinenside showed potential for bioaccumulation, other compounds demonstrated 27 
moderate toxicity profiles. Conclusion: The findings suggest that saponarin, tinosinenside, and astragalin are promising 28 
candidates for DPP-4 inhibition and could be developed as novel therapeutic agents for T2D management. Further in vitro 29 
and in vivo studies are recommended to validate these computational predictions and explore the clinical potential of these 30 
phytochemicals. 31 
Keywords: Tinospora cordifolia, DPP-4 inhibitors, type 2 diabetes, molecular docking, bioinformatics 32 
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Significance: 35 
This study determined Tinospora cordifolia phytochemicals as potential DPP-4 inhibitors, offering promising therapeutic 36 
candidates for type 2 diabetes. 37 
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 44 
Introduction 45 
Diabetes mellitus is a metabolic disorder characterized by dysregulation in carbohydrate, fat, and protein metabolism, 46 
leading to persistent hyperglycemia due to either insulin deficiency or insulin resistance (Omoboyowa et al., 2023). The 47 
disease is classified into type 1 and type 2 diabetes, with type 2 diabetes (T2D) accounting for over 90% of all reported 48 
cases, making it a major global health concern (Elekofehinti, 2023). T2D is a chronic condition marked by insulin 49 
resistance, resulting in elevated blood glucose levels that require long-term management through lifestyle modifications, 50 
dietary control, physical activity, and oral medications (Macalalad et al., 2023). However, there is currently no definitive 51 
cure for T2D, and untreated cases can lead to severe complications such as cardiovascular diseases, diabetic retinopathy 52 
leading to adult blindness, nephropathy, neuropathy, and lower-limb amputations (Roglic, 2016). The increasing 53 
prevalence of T2D worldwide highlights the limitations of existing treatments, underscoring the urgent need for novel 54 
therapeutic alternatives to complement current drug regimens. 55 
Medicinal plants have played a crucial role in traditional and modern medicine due to their bioactive phytochemicals with 56 
therapeutic potential. Tinospora cordifolia, commonly known as Guduchi or Giloy, belongs to the Menispermaceae family 57 
and has been widely recognized for its pharmacological properties (Dhama et al., 2017). Studies have reported various 58 
biological activities of T. cordifolia, including anticancer (Singh et al., 2006), antihyperlipidemic (Stanely et al., 2000), and 59 
hepatoprotective effects (Bishayi et al., 2002). Additionally, T. cordifolia has demonstrated antidiabetic properties in 60 
preclinical studies. Rajalakshmi et al. (2009) reported that stem extracts of T. cordifolia exhibited antidiabetic effects in 61 
streptozotocin-induced diabetic rats, while Sangeetha et al. (2013) highlighted the role of palmatine, a phytoconstituent of 62 
T. cordifolia, in enhancing glucose uptake via GLUT-4 expression in L6 myotubes. Despite these promising findings, the 63 
precise mechanism underlying the antidiabetic action of T. cordifolia phytochemicals remains largely unexplored. 64 
This study aims to investigate the molecular mechanism by which T. cordifolia exerts its antidiabetic effects by targeting 65 
key proteins implicated in T2D pathogenesis. One such target is dipeptidyl peptidase-4 (DPP-4), a serine aminopeptidase 66 
and transmembrane glycoprotein that plays a crucial role in glucose metabolism (Saini et al., 2023). DPP-4 deactivates 67 
incretin hormones, including glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are essential for 68 
stimulating insulin secretion. Inhibiting DPP-4 can prolong incretin activity, thereby enhancing insulin release and 69 
improving glycemic control (Macalalad et al., 2023). This study employs advanced bioinformatics approaches, including 70 
molecular docking, quantitative structure-activity relationship (QSAR) modeling, pharmacophore modeling, MM/GBSA 71 
calculations, and pharmacokinetic profiling, to elucidate the potential of T. cordifolia phytocompounds as DPP-4 72 
inhibitors. Understanding the molecular interactions between T. cordifolia phytochemicals and DPP-4 may pave the way 73 
for the development of novel plant-derived therapeutics for T2D management. 74 
 75 
 76 
Materials and Methods 77 
Preparation of Compounds 78 
A comprehensive library of 141 bioactive compounds from Tinospora cordifolia was compiled through an extensive 79 
literature review using Google Scholar and PubChem databases (https://pubchem.ncbi.nlm.nih.gov/). The chemical 80 
structures of these compounds, along with the co-crystallized ligand and a standard reference drug, were retrieved in 81 
Structure Data File (SDF) format. Ligand preparation was conducted using the LigPrep module of Schrödinger Suite 82 
(version 2017-V2). The OPLS3 force field was applied at a pH of 7.0 ± 2, with Epik used for ionization state generation. 83 
Desalting and tautomer generation options were enabled to ensure structural integrity. Stereoisomer configurations were 84 
maintained to retain specific chiral centers while varying other centers, generating a maximum of one stereoisomer per 85 
ligand. 86 
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Target Protein Preparation and Docking Procedure 87 
The crystallographic structure of dipeptidyl peptidase-4 (DPP-4) from Homo sapiens (PDB ID: 2HHA) was obtained from 88 
the RCSB Protein Data Bank (www.rcsb.org). Monomeric chain A of the protein was prepared using the Protein 89 
Preparation Wizard in Schrödinger Suite (version 2017-V2). This process involved adding missing hydrogen atoms, 90 
assigning bond orders, optimizing hydrogen-bonding networks, and minimizing energy using the OPLS3 force field. The 91 
receptor grid was generated at the binding site of the co-crystallized ligand with coordinates set at x = 39.15, y = 49.23, and 92 
z = 38.06 (Omoboyowa, 2024). 93 
Prepared T. cordifolia compounds were virtually screened against the DPP-4 binding site using the Glide module in 94 
Schrödinger Suite. Extra precision (XP) docking mode was employed to ensure high accuracy in binding affinity 95 
predictions. The resulting protein-ligand complexes were visualized and analyzed using Discovery Studio Visualizer 2020. 96 
The binding interactions and energy profiles were assessed to identify the most promising inhibitors. The crystallographic 97 
structure and docking interactions are illustrated in Figure 2. 98 
Pharmacophore Modeling and Fitness Score Estimation 99 
Pharmacophore modeling was performed using the Receptor-Ligand Pharmacophore Hypothesis module of Schrödinger 100 
Suite (version 2017-V2). A pharmacophore hypothesis was generated based on the active site interactions of the 101 
crystallographic DPP-4 structure. This hypothesis was then used to screen the T. cordifolia compounds. Fitness scores were 102 
calculated using the Phase Screen module to evaluate the alignment of the compounds with the pharmacophore features 103 
(Omoboyowa, 2022). 104 
QSAR Modeling and PIC50 Estimation 105 
Experimental datasets of known DPP-4 inhibitors, along with their respective PIC50 values, were retrieved from the 106 
ChEMBL database (https://www.ebi.ac.uk/chembl/) through BLAST analysis of the DPP-4 FASTA sequence. The datasets 107 
were converted into SDF format using DataWarrior software and subsequently imported into the Maestro workspace of 108 
Schrödinger Suite. The MacroModel minimization tool was used to optimize the structures. A quantitative structure-109 
activity relationship (QSAR) model was developed based on the experimental PIC50 values. This model was then applied 110 
to predict the PIC50 values of the T. cordifolia hit compounds to assess their inhibitory potential against DPP-4 111 
(Omoboyowa, 2022). 112 
Toxicity Prediction Using QSAR-TEST 113 
The toxicity of the hit compounds was evaluated using the QSAR-Toxicity Estimation Software Tool (TEST), Version 4.2 114 
(Martin, 2016). The primary endpoint analyzed was the oral rat LD50 (lethal dose for 50% of the population). The 115 
predicted toxicity values were classified according to the mammalian toxicity scale categories provided by the Agency for 116 
Toxic Substances and Disease Registry (ATSDR): Category X (Extreme toxicity), A (Very high toxicity), B (High toxicity), 117 
C (Moderate toxicity), and D (Low toxicity) (Sripriya et al., 2019). Additionally, the bioaccumulation factor (BF), 118 
developmental toxicity (DT), and mutagenicity of the compounds were assessed using TEST 4.2 to ensure comprehensive 119 
safety profiling. 120 
 121 
Results and Discussion 122 
The pursuit of novel small molecules that can effectively modulate target protein activity for therapeutic applications is the 123 
cornerstone of drug design. Identifying these chemical compounds within the vast chemical space is unattainable without 124 
prior knowledge of their molecular structures and interactions (Bodun et al., 2025). Consequently, virtual screening of 125 
natural compounds derived from medicinal plants has emerged as a critical method in discovering such bioactive 126 
molecules. In this study, bioactive compounds from Tinospora cordifolia were screened against dipeptidyl peptidase-4 127 
(DPP-4), a significant therapeutic target for type 2 diabetes. 128 
Results of Molecular Docking Study 129 
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Molecular docking, a pivotal tool in drug discovery, employs virtual screening protocols to predict the binding model and 130 
affinity of chemical compounds within the binding sites of protein targets (Omoboyowa, 2024). Validation of docking 131 
procedures is crucial to ensure the reliability and reproducibility of the protocols. In this study, the co-crystallized ligand 132 
from the protein’s crystallographic structure was re-docked into its binding domain for superimposition, as illustrated in 133 
Figure 2. The root mean square deviation (RMSD) of the superimposed structure was 1.992 Å, falling below the acceptable 134 
threshold of 2.0 Å, thereby confirming the protocol's reliability (Balogun et al., 2021). 135 
Molecular docking elucidates interactions between small molecules and proteins at the atomic level, highlighting the 136 
binding affinity of protein-ligand complexes. Among the 141 natural compounds from T. cordifolia screened against DPP-137 
4, five exhibited higher binding affinities than the standard drug, rosiglitazone. Rosiglitazone, a potent member of the 138 
thiazolidinedione class, is commonly used alongside other anti-diabetic medications like metformin to enhance the body’s 139 
insulin sensitivity and regulate blood sugar levels. The results presented in Figure 2 indicate that saponarin demonstrated 140 
the highest binding affinity (-10.40 kcal/mol), surpassing the co-crystallized ligand’s binding affinity of -9.74 kcal/mol. 141 
This superior binding affinity is attributed to the interaction of various functional groups within these compounds and the 142 
amino acid residues at the DPP-4 binding site. As depicted in Figure 4, saponarin exhibited the highest number of 143 
hydrogen bond interactions among the hit compounds and standards, forming seven hydrogen bonds with ARG 125, GLU 144 
205, HIS 126, CYS 551, and ASP 545. Tinosinenside followed closely with six hydrogen bonds involving ARG 669, GLU 145 
206, TYR 662, ARG 125, and GLU 205. The co-crystallized ligand formed five hydrogen bonds with ARG 356, ARG 669, 146 
ARG 125, and ASN 710. Other hit compounds exhibited fewer hydrogen bonds: astragalin formed four, tyramine one, and 147 
higenamine none. Although other interaction types such as salt bridges, pi-sulfur, and carbon-hydrogen bonds were 148 
observed (Figure 5), hydrogen bond formation plays a critical role in stabilizing the three-dimensional structure of 149 
protein-ligand complexes (Pace et al., 2014). 150 
To validate the binding energies of the hit compounds, Molecular Mechanics Generalized Born Surface Area (MM/GBSA) 151 
calculations were conducted. MM/GBSA is a widely used method for biomolecular studies, including protein folding, 152 
protein-ligand binding, and protein-protein interactions. The binding free energy values (ΔG_bind) presented in Figure 3 153 
showed that the standard drug (rosiglitazone) and the co-crystallized ligand had the most favorable MM/GBSA scores of -154 
58.25 and -51.79 kcal/mol, respectively. Among the hit compounds, saponarin exhibited the best binding free energy of -155 
44.22 kcal/mol, while tyramine had the least favorable score of -18.06 kcal/mol. 156 
PIC50 Prediction of Hit Compounds via QSAR Modeling 157 
Quantitative Structure-Activity Relationship (QSAR) modeling is a computational technique that establishes correlations 158 
between the biological activities of chemical compounds and their structural properties. The principle underpinning QSAR 159 
is that variations in structural attributes result in differing biological activities (Kwon et al., 2019). In this study, AutoQSAR 160 
modeling of DPP-4 inhibitors retrieved from the ChEMBL database was performed. The dataset was automatically 161 
partitioned into 75% training and 25% test sets. The best-performing model, identified as kpls_molprint2D_36, was 162 
selected to predict the biological activities of the hit compounds. Model parameters are summarized in Table 2, and the 163 
observed versus predicted activities for the training and test sets are illustrated in the scatter plot in Figure 5. 164 
Based on predicted activity (pIC50) values, the co-crystallized ligand, with a pIC50 of 6.054 µM, was predicted to be more 165 
active than the hit compounds. However, saponarin, astragalin, and tinosinenside, with pIC50 values of 5.593 µM, 5.593 166 
µM, and 5.659 µM respectively, demonstrated better predicted activity than the standard drug rosiglitazone, which had a 167 
pIC50 of 5.059 µM (Table 3). 168 
Pharmacophore Modeling and Phase Screening of Bioactive Compounds 169 
Pharmacophore modeling is a cutting-edge technology utilized to identify and characterize the potential interactions 170 
within ligand-receptor complexes. These interactions encompass steric and electronic features essential for eliciting a 171 
biological response (Tyagi et al., 2022). In this study, an E-pharmacophore model was generated to elucidate the steric 172 
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properties of the co-crystallized ligand critical for optimal interaction with DPP-4. This pharmacophore hypothesis was 173 
subsequently applied to screen the hit compounds for shared steric features with the co-crystallized ligand. 174 
By comparing these features and evaluating their similarity, fitness scores for the hit compounds and the standard drug 175 
were calculated. The pharmacophore hypothesis for the co-crystallized ligand’s optimal interaction with DPP-4 comprised 176 
four features, as depicted in Figure 6. Fitness scores for the hit compounds are presented in Table 4. Tinosinenside 177 
exhibited the highest fitness score of 0.942, with three out of four features matched. The standard drug rosiglitazone 178 
followed with a fitness score of 0.564, matching all four features. Astragalin and higenamine matched all four features but 179 
had lower fitness scores of 0.476 and 0.433, respectively. Higher fitness scores indicate a stronger predicted biological 180 
activity of the compound against the target protein. 181 
Overall, the findings from molecular docking, MM/GBSA binding energy calculations, QSAR modeling, and 182 
pharmacophore screening provide a comprehensive understanding of the potential anti-diabetic properties of T. cordifolia 183 
bioactive compounds. The results highlight saponarin, tinosinenside, and astragalin as promising candidates for further 184 
investigation and development as therapeutic agents for type 2 diabetes. 185 
 186 
Results of the Toxicity Prediction by QSAR-TEST 187 
The toxicity assessment was conducted using the Quantitative Structure-Activity Relationship (QSAR) Toxicity Estimation 188 
Software Tool (TEST), a computational model designed to predict the potential toxicity of chemical compounds based on 189 
their molecular structure and properties. This tool facilitates the estimation of various toxicity endpoints, including 190 
bioaccumulation, developmental toxicity, mutagenicity, and lethal dose (LD50) values. 191 
As presented in Table 5, among the screened compounds, tinosinenside exhibited a high bio-concentration factor (BCF) of 192 
146.22, indicating a greater potential for bioaccumulation in living organisms. In contrast, other small molecules 193 
demonstrated moderate bioaccumulation potential, with the exception of saponarin, for which the QSAR-TEST tool did 194 
not provide a prediction. The bio-concentration factor represents the ratio of a chemical's concentration within an 195 
organism to its concentration in the surrounding environment at steady state, serving as a critical indicator of a substance's 196 
bioaccumulation potential (Petoumenou et al., 2015). Thus, tinosinenside may exhibit slight bioaccumulation in 197 
organisms, whereas the other compounds are more likely to be efficiently cleared from biological systems. 198 
Developmental toxicity, defined as the potential of a chemical to interfere with the normal development of an organism 199 
due to exposure either before conception or during development, was also evaluated (ECHA, 2017). Higenamine and 200 
astragalin were predicted to have developmental toxicity values of 0.76 and 0.58, respectively, classifying them as toxic 201 
according to the FDA/TERIS database (Sussman et al., 2003). This suggests that these compounds may pose developmental 202 
risks upon exposure. 203 
Regarding mutagenicity, only tyramine demonstrated a high mutagenicity value of 0.56, indicating a significant potential 204 
to cause genetic mutations. Mutagenicity is a crucial factor in assessing the long-term genetic risks posed by chemical 205 
compounds. 206 
The predicted lethal dose (LD50) values in oral rats, which measure the dose required to cause death in 50% of the test 207 
population, revealed that tinosinenside exhibited moderate toxicity. In contrast, the remaining compounds, including 208 
saponarin, higenamine, astragalin, and tyramine, were predicted to have low toxicity levels, indicating a safer profile for 209 
potential therapeutic use (Table 5). 210 
Overall, the QSAR-TEST predictions provide valuable insights into the safety profiles of the bioactive compounds from T. 211 
cordifolia. While tinosinenside shows some bioaccumulation and moderate toxicity, the other compounds demonstrate 212 
favorable toxicity profiles, supporting their potential as safer candidates for further investigation in diabetes treatment. 213 
 214 
 215 
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Conclusion 216 
This study demonstrates the potential of Tinospora cordifolia phytocompounds as therapeutic agents for type 2 diabetes 217 
(T2D) through targeted inhibition of dipeptidyl peptidase-4 (DPP-4). Using advanced bioinformatics approaches, 218 
including molecular docking, QSAR modeling, MM/GBSA calculations, and pharmacophore modeling, saponarin, 219 
tinosinenside, and astragalin emerged as promising candidates with superior binding affinities and favorable 220 
pharmacokinetic profiles compared to the standard drug rosiglitazone. Saponarin exhibited the highest binding affinity (-221 
10.40 kcal/mol) and demonstrated significant interactions with key amino acid residues in DPP-4. Additionally, toxicity 222 
assessments via QSAR-TEST indicated minimal bioaccumulation and acceptable safety profiles for most hit compounds, 223 
with tinosinenside showing slight bioaccumulation potential. These findings underscore the promise of T. cordifolia in 224 
developing novel plant-based therapeutics for T2D management. However, further in vitro and in vivo validation is 225 
essential to confirm these bioactivities and ensure clinical applicability. 226 
 227 
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 294 
Figure 1: Crystal structure of DPP-4 (2HHA)  295 
 296 

    297 
Figure 2: Validation of docking procedure by superimposition of the co-crystallized ligand 298 
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 299 
Figure 3: Representation of the binding affinity and MM/GBSA (ΔGbind) of hit molecules 300 
 301 
Table 1: Binding interactions of hit compounds against target of diabetes  302 
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Compounds ID No of H-bond Interacting Residues  

Rosiglitazone 2 GLN 553; TYR 666 

Co-Ligand 5 ARG 356; ARG 669; ARG 125; ASN 710 

Saponarin 7 ARG 125; GLU 205; HIS 126; CYS 551; ASP 545 

Astragalin 4 ASN 710; TYR 662; GLU 206; GLN 553  

Higenamine NIL NIL 

Tinosinenside 6 ARG 669; GL;U 206; TYR 662; ARG 125; GLU 205 

Tyramine 1 GLU 205 

 303 

 304 
Figure 4: Interactions of the hit compounds and amino acid residues at DPP-4 binding site 305 
 306 
Table 2: Parameters corresponding to the selected model 307 
Best Model  S.D R2 RMSE Q2 

kpls_molprint2D_36 0.5180 0.7823 0.6136 0.5487 

 308 
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 309 
Figure 5: Scatter plot of the observed and predicted activity 310 
 311 
Table 3: PIC50 of hit compounds  312 
Compound ID pIC50 (µm) 

Rosiglitazone 5.059 

Co-Ligand 6.054 

Saponarin 5.593 

Astagalin 5.593 

Higenamine 5.036 

Tinosineneside 5.659 

Tyramine 4.863 

 313 
 314 
 315 
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 316 
Figure 6: E-pharmacophore hypothesis between co-crystalized ligand and DPP-4 317 
 318 
Table 4: Fitness score of hit compounds  319 
Compound ID Matched Ligand sites Fitness score 

Rosiglitazone  0.564 

Co-Ligand  0.452 

Saponarin 
 

0.412 

Astragalin  0.476 

Higenamine  0.433 

Tinosinenside  0.942 

Tyramine  0.455 

 320 
 321 
Table 5: Prediction of toxicity parameters of the hit compounds 322 
Compound ID Bio-concentration 

Factor 
Developmental 
Toxicity 

Mutagenicity Oral Rat 

Value Result Value Result LD50 
(mg/kg) 

Category 

Saponarin NA 0.40 DNT 0.12 -ve 3433.94 D 

Higenamine 9.48 0.76 DT 0.47 -ve 1895.65 D 

Tinosinenside 149.22 0.42 DNT 0.08 -ve 33.90 C 

Tyramine 2.59 0.44 DNT 0.56 +ve 1170.73 D 

Astragalin 13.77 0.58 DT 0.38 -ve 2576.37 D 

DT: Developmental toxicant; DNT: Developmental Non-toxicant; -ve: Mutagenicity negative; +ve: Mutagenicity positive; 323 
NA: Not applicable; C: Moderate toxicity; D: Low toxicity 324 
 325 
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