Comparative Efficacy of Endovascular Versus Surgical Thrombectomy for Arteriovenous Graft Thrombosis in Hemodialysis Patients - A Systematic Review and Meta-Analysis

Thomas Jatiman^{1*}, Ni Kadek Sulistyaningsih¹, Danang Himawan Limanto¹

Abstract

Background: End-stage kidney disease (ESKD) is a significant public health issue, necessitating hemodialysis as a primary renal replacement therapy. The long-term success of hemodialysis depends on maintaining functional vascular access, with arteriovenous grafts (AVGs) being widely utilized. Thrombosis remains a major complication leading to access failure, necessitating prompt and effective intervention. This systematic review and meta-analysis compare the efficacy of endovascular and surgical thrombectomy in managing thrombosed AVGs. Methods: A systematic search was conducted in Cochrane Library, EMBASE, and PubMed for studies published between 2015 and 2023. Studies comparing endovascular and surgical thrombectomy in hemodialysis patients were included. Statistical analyses were performed using Review Manager software, applying random-effects models where heterogeneity was significant (l² > 50%). The primary outcomes assessed were technical failure, primary non-patency at one year, and secondary non-patency at one year. Results: Six

Significance | This study evaluates endovascular versus surgical thrombectomy in arteriovenous graft thrombosis, providing insights for optimizing hemodialysis vascular access management and patient outcomes.

*Correspondence. Thomas Jatiman, Thoracic, Cardiac and Vascular Surgery Department, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Prof Dr. Moestopo, Surabaya, 60286, Indonesia. E-mail: thomasjatiman@gmail.com Phone number: +628588388882

Editor Mohammad Mamun Alam, Ph.D., And accepted by the Editorial Board December 21, 2024 (received for review November 09, 2024)

retrospective cohort studies involving 1,520 participants were included. The analysis revealed no statistically significant difference in one-year primary non-patency between endovascular and surgical thrombectomy (OR: 0.58, 95% Cl: 0.20-1.62, p = 0.29). Similarly, one-year secondary non-patency rates showed no significant difference (OR: 0.86, 95% CI: 0.64–1.16, p = 0.32). Technical failure rates were comparable between the two interventions. While surgical thrombectomy has traditionally been favored, recent advancements in endovascular techniques have led to equivalent patency outcomes. Conclusion: Endovascular and surgical thrombectomy demonstrate comparable efficacy in managing thrombosed AVGs in hemodialysis patients. Given the minimally invasive nature and technological advancements of endovascular techniques, they may offer a viable alternative to surgical thrombectomy. Further randomized controlled trials are needed to refine treatment strategies and optimize vascular access management.

Keywords: End-stage kidney disease, Hemodialysis vascular access, Arteriovenous graft thrombosis, Endovascular thrombectomy, Surgical thrombectomy

Introduction

End-stage kidney disease (ESKD) is a growing public health concern, affecting over 785,000 individuals in the United States as of 2018 (Gusev et al., 2021). The management of ESKD often

Please Cite This:

Jatiman, T., Sulistyaningsih, N. K., Limanto, D. H. (2024). "Comparative Efficacy of Endovascular Versus Surgical Thrombectomy for Arteriovenous Graft Thrombosis in Hemodialysis Patients - A Systematic Review and Meta-Analysis", Journal of Angiotherapy, 8(12),1-10,10120

> 2207-872X/© 2024 ANGIOTHERAPY, a publication of Eman Research, USA. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/). (https./publishing.emanresearch.org).

Author Affiliation.

¹ Thoracic, Cardiac and Vascular Surgery Department, Faculty of Medicine, Universitas Airlangga, Soetomo General Academic Hospital, Prof Dr. Moestopo, Surabaya, 60286, Indonesia.

requires renal replacement therapy, with hemodialysis being the most commonly employed modality. Hemodialysis relies on the establishment and maintenance of vascular access, which serves as the critical interface between the patient's circulatory system and the dialysis machine. The three principal types of vascular access used in hemodialysis are arteriovenous fistulas (AVFs), arteriovenous grafts (AVGs), and central venous catheters (CVCs) (Santoro et al., 2014; Etkin, Woo, & Guidry, 2023). While CVCs are generally reserved for short-term use due to their association with higher infection and thrombosis rates, AVFs and AVGs are preferred for long-term dialysis access (Drew et al., 2015). AVFs are surgically created by directly connecting an artery to a vein, whereas AVGs involve the use of a synthetic graft to bridge an artery and a vein. The establishment of a functional dialysis vascular access requires both a patent effluent vein and an intact feeding artery to ensure adequate blood flow for effective hemodialysis (Smith, Gohil, & Chetter, 2012).

The durability and long-term patency of AV access depend on several factors, including anatomical location, patient demographics (such as age, sex, and comorbidities), surgical expertise, and ongoing monitoring practices (Abularrage et al., 2004). Thrombosis remains a significant complication, often leading to vascular access failure and abandonment. Late thrombosis, which occurs after successful maturation of the access, is the primary reason for access failure. The pathophysiology of AV access thrombosis is frequently associated with underlying stenosis, which increases the risk of impaired blood flow, high venous pressures, and eventual occlusion (MacRae et al., 2016). Moreover, AV access thrombosis is strongly correlated with increased morbidity and mortality in hemodialysis patients, highlighting the urgency of effective management strategies (Girerd et al., 2019).

Early thrombosis, occurring before the access is ready for dialysis, is often indicative of immaturity and inadequate blood flow dynamics. Timely intervention is crucial to restoring access function and preventing the need for alternative vascular access options, such as CVCs, which are associated with higher risks of infection and cardiovascular complications (Hod et al., 2014). Various thrombectomy techniques have been developed to manage access thrombosis, but consensus regarding the most effective approach remains elusive. Current treatment strategies include both percutaneous (endovascular) and open surgical interventions. Surgical thrombectomy is a well-established approach that may necessitate additional procedures such as patch plasty, interposition graft placement, or anastomotic revision to ensure continued access functionality (Izagirre, 2012). Endovascular techniques, on the other hand, have gained traction due to their minimally invasive nature and high technical success rates. These include pharmacologic thrombolysis using agents such as alteplase and urokinase, pharmacomechanical thrombolysis, and mechanical

thrombectomy, often supplemented with balloon angioplasty or stenting to address underlying stenosis (Comerota et al, 2018).

Historically, surgical thrombectomy has been considered the gold standard for thrombosed prosthetic grafts, yet long-term patency rates following surgical intervention have been suboptimal (Fonseca et al., 2019). Endovascular techniques have emerged as viable alternatives, demonstrating comparable, if not superior, outcomes in terms of procedural success and patency preservation (Koraen-Smith et al., 2018). However, randomized controlled trials evaluating these treatment modalities remain limited, and most available studies predate the widespread adoption of contemporary endovascular approaches (Lundström et al., 2022). Decisionmaking regarding thrombosis management is further influenced by institutional preferences, operator expertise, and resource availability (Almehmi et al., 2022).

Given the critical role of AV access in hemodialysis-dependent patients, optimizing thrombosis management strategies is essential to improving patient outcomes and reducing the burden of vascular access failure. This systematic review and meta-analysis aim to evaluate and compare the efficacy of endovascular and surgical interventions in the treatment of thrombosed AVGs, with the goal of informing clinical practice and guiding future research in this domain.

2. Methodology

2.1 Data Sources and Search Strategies

A comprehensive literature search was conducted independently by two researchers on January 20, 2023, using the Cochrane Library, EMBASE, and PubMed. A set of predefined keywords was employed to identify relevant studies comparing endovascular therapy and open surgery for thrombosed arteriovenous grafts in hemodialysis patients. The search query included the terms: ((Surgical) OR (Open Surgical)) OR ((Surgical Thrombectomy) OR (Open Surgical Thrombectomy)) AND ((Endovascular) OR (Endovascular Thrombectomy)) AND ((AV Shunt) OR (arteriovenous access) OR (Arteriovenous Hemodialysis)) AND ((Thrombosis) OR (thrombosed)). Additionally, a manual search was conducted to retrieve articles that met the eligibility criteria. Any discrepancies in study selection were resolved through consensus, with the involvement of a third author. The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. As illustrated in Figure 1, a total of six relevant studies were identified for inclusion.

The inclusion criteria for the studies were as follows: (1) the publication was written in English, and full-text access was available; (2) studies published between January 2015 and January 2023 were considered; (3) eligible study designs included cohort, case-control, case series, cross-sectional studies, and randomized

REVIEW

Table 1. Study characteristics

Author	Study	Sample size	Age	Result of the study	Discussion
	Design				
Lundström, et al 2022	retrospective studies	A cohort consisting of 904 patients diagnosed with AV access thrombosis was examined, with 60% of the individuals being women.	Mean age 62 years	Following the endovascular intervention, it was seen that secondary patency rates were more favourable compared to surgical intervention. Specifically, at the 30-day mark, the secondary patency rate was 85% for endovascular intervention, whereas it was 77% for surgery. Similarly, at the 90-day mark, the secondary patency rate was 76% for endovascular intervention, but it was 69% for surgery. The surgical thrombectomy group exhibited higher adjusted odds of access abandonment within 90 days and 1 year, with odds ratios (OR) of 1.44 [95% confidence interval (CI): 1.05–1.97] and 1.25 (0.94–1.66), respectively. The results of the long-term examination exhibited consistency. No statistically significant disparities were observed in terms of the duration until the subsequent intervention or the rate of mortality. Additionally, the outcomes within different subgroups were found to be similar.	In the context of patients undergoing haemodialysis with AV access thrombosis, it was seen that endovascular intervention exhibited a little advantage in both the short and long term when compared to open surgery.
Koraen- Smith et al, 2018	retrospective studies	A total of 107 individuals underwent surgical thrombectomy, whereas 42 individuals received treatment with catheter-directed thrombolytic infusion.	Mean age 65 years	The effectiveness of surgical thrombectomy was found to be 60%, whereas thrombolysis had an efficacy rate of 73% (p=0.18). No severe problems or deaths were observed within a 30-day period following the surgery. A greater proportion of patients in the thrombolysis group underwent adjunctive procedures compared to the control group (65 out of 107 patients versus 37 out of 42 patients; p=0.002). Following open thrombectomy, there was an observed elevation in the likelihood of rethrombosis or a subsequent access-related event for both arteriovenous fistulas and arteriovenous grafts. Notably, arteriovenous fistulas demonstrated a comparatively lower risk than arteriovenous grafts. The average increase in risk between each treatment group was estimated to be 23.9% (95% confidence interval: 3.1–49).	Over the course of time, the administration of thrombolysis has demonstrated a decrease in the likelihood of a subsequent access-related incident for both arteriovenous fistulas (AVFs) and arteriovenous grafts (AVGs). The mean risk increment for a novel incidence among the therapy groups was 23.9%. As mentioned earlier, there was a higher frequency of adjunctive operations observed in the thrombolysis group, which emphasises the significance of improved visibility and the ability to address underlying causal lesions in order to sustain the patency of arteriovenous grafts (AVG) and arteriovenous fistulas (AVF).

Table 1. Continu	lous				
Puangpunngam	retrospective	Seventy-four	mean age of	There were no statistically significant	The arteriovenous graft (AVG) is
et al, 2019	studies	thrombosed dialysis	patients was	differences seen between the groups	the ideal choice for establishing a
		grafts were included.	60.68±14.37	with respect to demographic	long-term hemodialysis access in
		Twenty-five and 49	years	characteristics, graft type, or the use of	individuals diagnosed with end-
		grafts underwent		adjunct procedures. The operation	stage renal disease and a limited
		endovascular		demonstrated an effectiveness rate of	time frame before their first
		therapy and open		92% in the endovascular group and	hemodialysis treatment.
		surgical		98% in the thrombectomy group	Nevertheless, it is important to
		thrombectomy,		(p=0.262). The endovascular group	note that access thrombosis is a
		respectively		exhibited a primary patency rate of	frequently encountered
				26% at the one-year mark, while the	complication in this patient
				thrombectomy group demonstrated a	population. The utilisation of
				rate of 33% (p=0.054). The secondary	endovascular therapy has become
				patency rate at one year was 82.6% in	a global practise, serving as a
				the endovascular group, whereas it was	viable substitute for open surgical
				56.2% in the thrombectomy group	thrombectomy in cases of
				(p=0.122).	thrombosed hemodialysis grafts.
					Initial studies revealed that open
					surgical thrombectomy exhibited
					superior efficacy compared to
					endovascular treatment.
Hongsakul et al,	retrospective		mean ages	There were no statistically significant	Less frequent problems such as
2015	studies		were 55 ± 10	disparities observed between the	vein rupture, graft extravasation,
			years	pharmacomechanical thrombolysis	and pseudoaneurysm
				group and the thrombectomy group	development can be managed with
				with regard to procedural success rates	an endovascular approach
				(94% versus 93.8%, P = 0.15) or	subsequent to thrombolysis.
				average patency durations (6.24	
				months against 6.30 months, $P = 0.15$).	
				The primary and secondary patency	
				rates for the group that underwent	
				thrombolysis with angioplasty at the	
				12-month mark were found to be	
				28.0% ± 8.4% and 54.3% ± 7.8%,	
				respectively. Statistical analysis	
				revealed that there was no significant	
				difference in these rates, as indicated	
				by the p-values of 0.65 and 0.49,	
				respectively. There were no notable	
				problems associated with the	
				operation.	

Table 1. C	Continuous				
Lambert	retrospective	A cumulative count of 155	Mean	Out of the 128 surgical thrombectomies	Thrombectomy as a standalone
et al,	studies	access thrombectomies	age	performed, a total of 82 cases (64%) did	procedure exhibits a rather low success
2018		were executed.	were 61	not necessitate any supplementary	rate in approximately 66% of cases. This
			years	treatment. Surgical revision was	finding provides evidence in favour of
				required in 43 cases (34%), while on-	the concept that the occurrence of
				table balloon angioplasty was	dialysis access thrombosis might be
				performed in 3 cases (2%). A balloon	attributed to the presence of stenosis
				angioplasty procedure was performed	inside the access. The selection of the
				subsequent to each of the 27	preferred modality for thrombectomy is
				interventional thrombectomies. The	contingent upon the presence of local
				utilisation of surgical revision (74%) or	proficiency and resources, while also
				balloon angioplasty (87%) resulted in a	necessitating the implementation of
				significant increase in the success rate	proactive management strategies for an
				when compared to the absence of an	underlying stenosis. Thrombectomies
				adjuvant operation (38%; p<0.001). The	accompanied with active stenosis
				thrombectomies of arteriovenous	treatment have demonstrated notable
				fistulas in the upper arm exhibited a	enhancements in results, as evidenced
				greater incidence of primary failure	by a 40% aided primary patency rate
				(57%) compared to those performed in	seen over a three-year period.
				the forearm (40%) and arteriovenous	
				grafts (33%; p=0.056). In comparison to	
				surgical procedures, interventional	
				treatment demonstrated superior	
				assisted primary patency (p=0.02), with	
				even more significant improvements	
				observed following thrombectomy with	
				further treatment (p=0.005). The	
				patency rates were found to be similar	
				across patients who underwent surgical	
				revision and those who underwent	
				balloon angioplasty of the access	
				(p=0.15).	
Zhang et	retrospective	Based on the	Age	The study findings indicate that there	Hemodialysis access thrombosis is a
al. 2020	studies	thrombectomy approach.	range	was no statistically significant disparity	commonly documented consequence of
,		a total of 130 patients	of 30-	observed in the procedural success rate	arteriovenous anastomosis, with an
		were allocated into two	84	between the intervention and control	average occurrence rate of roughly two
		groups: an intervention	vears,	groups (P=0.55). There were no notable	to three times per year. It is vital to
		group (N=65) receiving	with a	problems observed, although the	promptly determine the appropriate
		endovascular treatment.	mean	control group saw two occurrences of	course of action among endovascular.
		and a control group	of 57	vascular rupture, whereas the	surgical, or mixed (hybrid) techniques
		(N=65) receiving	vears.	intervention group experienced three	to guarantee that patients attain a
		traditional hybrid	/	instances. The intervention group	minimum of 50% initial patency within
		treatment.		demonstrated significantly reduced	a span of 6 months.
				procedure times compared to the	
				control group (7414.21 min vs.	
				109.0519.20 min, respectively; P<0.05).	
				During the 6-month follow-up period,	
				there was no statistically significant	
				disparity observed between the	
				intervention and control groups in	
				terms of the primary patency rate after	
				the intervention (48.33% vs. 55.17%) or	
				the secondary patency rate after the	
				intervention (83.33% vs. 84.49%;	
				P=0.79). The variables that were found	
				to be significant predictors of primary	
				patency after the intervention were	
				dialysis clearance and 50% stenosis. The	
				hazard ratio for dialysis clearance was	
				7.80 (95% confidence interval: 1.75-	
				34.81; p=0.01), indicating a strong	
				association. Similarly, the hazard ratio	
				for 50% stenosis was 6.43 (95%	
				confidence interval: 2.43-17.01:	
				p<0.001), suggesting a significant	
				relationship as well.	
		1		1 1	1

Figure 1. PRISMA flow diagram

controlled trials (RCTs); and (4) the study must involve either endovascular thrombectomy or open surgical thrombectomy.

2.2 Data Extraction

Data extraction was performed by collecting information on the author, year of publication, study design, sample size, results, and relevant discussions. Statistical analyses were carried out using Review Manager software. Given the heterogeneity among the studies, meta-analyses were conducted on three primary outcomes using random-effects models to calculate odds ratios (ORs) and 95% confidence intervals (CIs). For cases where statistical heterogeneity was moderate, dichotomous data regarding adjusted ORs were pooled using a fixed-effects meta-analysis. When the I² value exceeded 50%, a random-effects meta-analysis was applied. The key variables assessed included technical failure, primary non-patency at one year, and secondary non-patency at one year.

3. Results

A total of six retrospective cohort studies met the inclusion criteria, comprising 765 participants (50.3%) in the surgical thrombectomy group and 755 participants (49.6%) in the endovascular thrombectomy group. Many studies were excluded due to their publication date, as research on this topic has been limited in recent years. Table 1 provides an overview of the included studies.

The primary non-patency rate at one year did not show a statistically significant difference between endovascular and surgical thrombectomy. The odds ratio (OR) was 0.58 (95% CI: 0.20–1.62, p = 0.29), indicating no clear superiority of either intervention (Figure 3A). Similarly, the secondary non-patency rate at one year also demonstrated no significant difference between the two treatment modalities, with an OR of 0.86 (95% CI: 0.64–1.16, p = 0.32) (Figure 3B).

4. Discussion

4.1 Comparison of Endovascular and Surgical Thrombectomy in Hemodialysis Patients

Access thrombosis remains a significant complication among hemodialysis patients, and both open surgical thrombectomy and endovascular therapy are widely utilized for its management. Historically, open surgical thrombectomy has been regarded as the superior option due to its perceived higher success rate. For instance, a meta-analysis conducted by Green et al. (2002) involving seven randomized controlled trials reported that surgical thrombectomy had significantly better outcomes in terms of failure rate (RR: 1.90, 95% CI: 1.32–2.73, p = 0.0005) and 90-day patency rate (RR: 1.22, 95% CI: 1.05–1.40, p = 0.007) compared to endovascular therapy. However, more recent studies, such as those by Tordoir et al. (2009) and Hongsakul et al. (2015), have shown comparable outcomes between the two treatment methods. Our findings align with more recent literature suggesting no significant differences in patency rates between surgical and endovascular thrombectomy over a one-year period. The absence of a significant disparity could be attributed to improvements in endovascular techniques, which now offer advantages such as reduced procedural time, minimal invasiveness, and the ability to simultaneously address both thrombosis and underlying stenosis (Almehmi et al., 2022; MacRae et al., 2016; Maleux, 2023).

4.2 Technical Failure and Procedural Success

The included studies also documented the proportion of technical failures. No statistically significant difference was observed between endovascular and surgical thrombectomy regarding technical failure. This contradicts some prior research, such as the analysis by Chan et al. (2019), which found that endovascular therapy had a significantly higher technical failure rate than surgical thrombectomy (RR: 1.58, 95% CI: 1.06–2.02, p = 0.03). Similarly, Fonseca et al. (2024) reported better primary patency at 30 days following surgical thrombectomy compared to mechanical thrombectomy.

Several factors may explain the variability in technical success across different studies. One key consideration is that graft thrombosis is often associated with outflow venous stenosis, primarily caused by venous neointimal hyperplasia. Effective management requires not only clot removal but also treatment of the underlying stenosis (MacRae et al., 2016). Open surgical thrombectomy typically involves a longer procedure due to additional steps such as graft incision, closure, and, in some cases, the need for general or regional anesthesia. Despite these factors, surgical thrombectomy has demonstrated comparable procedural success and primary graft patency rates when compared to endovascular techniques (Fonseca et al., 2024; Izagirre, 2012).

4.3 One-Year Primary Patency Rate

Our analysis found no significant difference in one-year primary patency between the two interventions. This is consistent with findings by Lundström et al. (2022), who reported that only 16% (n = 144) of patients maintained primary patency without intervention at one year. Their study also found that primary intervention-free patency favored endovascular therapy at 30 and 60 days, but by 90 days and 12 months, outcomes were comparable. Moreover, surgical thrombectomy was associated with a higher likelihood of access abandonment within the first 90 days (OR: 1.63, 95% CI: 1.11–2.33 at 30 days; OR: 1.44, 95% CI: 1.05–1.89 at 90 days).

Clinical practice guidelines generally favor arteriovenous fistulas over grafts due to their long-term patency advantages, although early failures remain a concern (Drew et al., 2015; Hod et al., 2014). Primary patency is typically defined as the duration between the initial intervention and the subsequent access-related event requiring re-intervention (Masud et al., 2018; Mo et al., 2024;

ANGIOTHERAPY

Takahashi, Harmsen, & Misra, 2020). Studies have emphasized the importance of timely intervention to optimize patency outcomes, as underlying stenosis is a major contributor to AV access thrombosis (MacRae et al., 2016). Endovascular therapy has been suggested as a superior approach in this regard due to its ability to detect stenosis through angiography and provide immediate correction (Malik et al., 2022).

4.4 One-Year Secondary Patency Rate

The current study found no statistically significant difference in the one-year secondary patency rate between surgical and endovascular thrombectomy. This finding is consistent with prior research. For instance, Lundström et al. (2022) observed better secondary patency outcomes with endovascular intervention over a five-year period. Generally, secondary patency—defined as the time until permanent access abandonment—was reported to be approximately 82% at one year and 73% at two years, with no substantial differences between arteriovenous grafts and fistulas (MacRae et al., 2016).

Similarly, Chan et al. (2019) found no significant difference in secondary non-patency rates between the two interventions at 30 days (RR: 1.04, 95% CI: 0.55–1.95, p > 0.05). Ko et al. (2018) also reported comparable secondary patency outcomes when evaluating hybrid versus surgical correction of arteriovenous graft occlusions. This suggests that while surgical thrombectomy remains a viable option, endovascular therapy provides a comparable long-term benefit, supporting its increasing use in clinical practice.

Several patient-related factors may play a role in secondary patency rates. The Virchow's triad of endothelial injury, stasis, and hypercoagulability is particularly relevant in patients with end-stage renal disease (ESRD), who often present with elevated C-reactive protein (CRP) levels, hyperhomocysteinemia, low serum albumin, and elevated lipoprotein levels, all of which contribute to increased thrombotic risk (Quencer & Oklu, 2017; Wu et al., 2023). These factors highlight the need for personalized treatment strategies based on patient-specific risk profiles.

4.5 Future Perspectives and Clinical Implications

Despite the findings of comparable outcomes between endovascular and surgical thrombectomy, several important considerations should guide clinical decision-making. Endovascular therapy offers the advantages of being minimally invasive and allowing multiple interventions over time, making it a suitable option for patients with significant comorbidities. Moreover, advancements in endovascular techniques, including newer thrombectomy devices and improved angioplasty methods, may further enhance the efficacy of this approach (Almehmi et al., 2022; MacRae et al., 2016; Maleux, 2023).

Current guidelines suggest that the choice of treatment should be based on institutional expertise and available resources. Given the evolving landscape of vascular access management, future research should focus on comparing novel endovascular techniques with surgical intervention in large-scale, prospective randomized controlled trials.

5. Conclusion

This systematic review and meta-analysis found no significant difference between endovascular and surgical thrombectomy in terms of one-year primary and secondary patency rates. While surgical thrombectomy has historically been regarded as the superior approach, advances in endovascular techniques have led to comparable long-term outcomes. Given the minimally invasive nature and growing success of endovascular therapy, it is increasingly becoming the preferred treatment option in many clinical settings. However, patient-specific factors, institutional expertise, and long-term follow-up studies should be considered when making treatment decisions. Further research is warranted to explore the role of novel endovascular interventions in optimizing vascular access patency in hemodialysis patients.

Author contributions

T.J. conceptualized and designed the study. N.K.S. conducted the experiments and collected data. D.H.L. performed the data analysis and interpretation. All authors contributed to drafting the manuscript, reviewed, and approved the final version of the manuscript.

Acknowledgment

The authors were grateful to their department.

Competing financial interests

The authors have no conflict of interest.

References

- Abularrage, C. J., Sidawy, A. N., Weiswasser, J. M., White, P. W., & Arora, S. (2004). Medical factors affecting patency of arteriovenous access. Seminars in vascular surgery, 17(1), 25-31 https://doi.org/10.1053/j.semvascsurg.2003.11.006
- Almehmi, A., Sheta, M., Abaza, M., Almehmi, S. E., El-Khudari, H., & Shaikh, A. (2022). Endovascular Management of Thrombosed Dialysis Vascular Circuits. Seminars in interventional radiology, 39(1), 14-22. https://doi.org/10.1055/s-0041-1740941
- Chan, N., Wee, I., Soong, T. K., Syn, N., & Choong, A. M. T. L. (2019). A systematic review and meta-analysis of surgical versus endovascular thrombectomy of thrombosed arteriovenous grafts in hemodialysis patients. Journal of vascular surgery, 69(6), 1976-1988.e7. https://doi.org/10.1016/j.jvs.2018.10.102
- Comerota A. J. (2018). Pharmacologic and Pharmacomechanical Thrombolysis for Acute Deep Vein Thrombosis: Focus on ATTRACT CME. Methodist DeBakey cardiovascular journal, 14(3), 219-227. https://doi.org/10.14797/mdcj-14-3-219

ANGIOTHERAPY

REVIEW

- Drew, D. A., Lok, C. E., Cohen, J. T., Wagner, M., Tangri, N., & Weiner, D. E. (2015). Vascular access choice in incident hemodialysis patients: a decision analysis. Journal of the American Society of Nephrology : JASN, 26(1), 183-191. https://doi.org/10.1681/ASN.2013111236
- Etkin, Y., Woo, K., & Guidry, L. (2023). Options for Dialysis and Vascular Access Creation. The Surgical clinics of North America, 103(4), 673-684. https://doi.org/10.1016/j.suc.2023.05.006
- Fonseca, A. V., Toledo Barros, M. G., Baptista-Silva, J. C. C., Amorim, J. E., & Vasconcelos, V. (2019). Interventions for thrombosed haemodialysis arteriovenous fistulas and grafts. The Cochrane Database of Systematic Reviews, 2019(3), CD013293. https://doi.org/10.1002/14651858.CD013293
- Fonseca, A. V., Toledo Barros, M. G., Baptista-Silva, J. C., Amorim, J. E., & Vasconcelos, V. (2024). Interventions for thrombosed haemodialysis arteriovenous fistulas and grafts. The Cochrane database of systematic reviews, 2(2), CD013293. https://doi.org/10.1002/14651858.CD013293.pub2
- Girerd, S., Girerd, N., Frimat, L., Holdaas, H., Jardine, A. G., Schmieder, R. E., Fellström, B., Settembre, N., Malikov, S., Rossignol, P., & Zannad, F. (2019). Arteriovenous fistula thrombosis is associated with increased all-cause and cardiovascular mortality in haemodialysis patients from the AURORA trial. Clinical kidney journal, 13(1), 116-122. https://doi.org/10.1093/ckj/sfz048
- Green, L. D., Lee, D. S., & Kucey, D. S. (2002). A metaanalysis comparing surgical thrombectomy, mechanical thrombectomy, and pharmacomechanical thrombolysis for thrombosed dialysis grafts. Journal of vascular surgery, 36(5), 939-945. https://doi.org/10.1067/mva.2002.127524
- Gusev, E., Solomatina, L., Zhuravleva, Y., & Sarapultsev, A. (2021). The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. International journal of molecular sciences, 22(21), 11453. https://doi.org/10.3390/ijms222111453
- Hod, T., Desilva, R. N., Patibandla, B. K., Vin, Y., Brown, R. S., & Goldfarb-Rumyantzev, A. S.
 (2014). Factors predicting failure of AV "fistula first" policy in the elderly. Hemodialysis international. International Symposium on Home Hemodialysis, 18(2), 507-515. https://doi.org/10.1111/hdi.12106
- Hongsakul, K., Rookkapan, S., Sungsiri, J., Boonsrirat, U., & Kritpracha, B. (2015). Pharmacomechanical Thrombolysis versus Surgical Thrombectomy for the Treatment of Thrombosed Haemodialysis Grafts. Annals of the Academy of Medicine, Singapore, 44(2), 66-70.https://doi.org/10.47102/annalsacadmedsg.V44N2p66
- Huijbregts, H. J., Bots, M. L., Wittens, C. H., Schrama, Y. C., Moll, F. L., Blankestijn, P. J., & CIMINO study group (2008). Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clinical journal of the American Society of Nephrology : CJASN, 3(3), 714-719. https://doi.org/10.2215/CJN.02950707
- Izagirre, M. (2012). Surgical treatment of complications in vascular accesses for haemodialysis. Diálisis y Trasplante, 33(4), 130-134. https://doi.org/10.1016/j.dialis.2012.06.010
- Ko, D. S., Choi, S. T., Lee, W. S., Chun, Y. S., Park, Y. H., & Kang, J. M. (2018). Comparison of Outcomes of Hybrid and Surgical Correction for De Novo Arteriovenous Graft

Occlusion. Vascular specialist international, 34(4), 88-93. https://doi.org/10.5758/vsi.2018.34.4.88

- Koraen-Smith, L., Krasun, M., Bottai, M., Hedin, U., Wahlgren, C. M., & Gillgren, P. (2018). Haemodialysis access thrombosis: Outcomes after surgical thrombectomy versus catheter-directed thrombolytic infusion. The journal of vascular access, 19(6), 535-541. https://doi.org/10.1177/112972981876127
- Lambert, G., Freedman, J., Jaffe, S., & Wilmink, T. (2018). Comparison of surgical and radiological interventions for thrombosed arteriovenous access. The journal of vascular access, 19(6), 555-560. https://doi.org/10.1177/1129729818762007
- Lundström, U. H., Welander, G., Carrero, J. J., Hedin, U., & Evans, M. (2022). Surgical versus endovascular intervention for vascular access thrombosis: a nationwide observational cohort study. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 37(9), 1742-1750. https://doi.org/10.1093/ndt/gfac036
- MacRae, J. M., Dipchand, C., Oliver, M., Moist, L., Lok, C., Clark, E., Hiremath, S., Kappel, J., Kiaii, M., Luscombe, R., Miller, L. M., & Canadian Society of Nephrology Vascular Access Work Group (2016). Arteriovenous Access Failure, Stenosis, and Thrombosis. Canadian journal of kidney health and disease, 3, 2054358116669126. https://doi.org/10.1177/2054358116669126
- Maleux G. (2023). Management of Thrombosed Dialysis Access Circuits. Cardiovascular and interventional radiology, 46(9), 1162-1167. https://doi.org/10.1007/s00270-023-03434-w
- Malik, J., de Bont, C., Valerianova, A., Krupickova, Z., & Novakova, L. (2022). Arteriovenous
 Hemodialysis Access Stenosis Diagnosed by Duplex Doppler Ultrasonography:
 A Review. Diagnostics (Basel, Switzerland), 12(8), 1979.
 https://doi.org/10.3390/diagnostics12081979
- Masud, A., Costanzo, E. J., Zuckerman, R., & Asif, A. (2018). The Complications of Vascular Access in Hemodialysis. Seminars in thrombosis and hemostasis, 44(1), 57-59. https://doi.org/10.1055/s-0037-1606180
- Mo, H., Kwon, S., Kim, D., Kim, Y. J., Kim, H., Yang, S. B., & Kwon, Y. J. (2024). Patency of arteriovenous fistulas and grafts for dialysis access: An analysis using the Korean National Health Insurance Service database from 2008 to 2019. The journal of vascular access, 25(5), 1544-1552. https://doi.org/10.1177/11297298231180253
- Puangpunngam, N., Supokaivanich, N., Ruangsetakit, C., Wongwanit, C., Sermsathanasawadi, N., Chinsakchai, K., Hahtapornsawan, S., Hongku, K., Mutirangura, P., Thamtorawat, S., Rojwatcharapibarn, S., Chaiyasoot, W., Yodying, J., & Tongdee, T. (2019). Endovascular thrombectomy versus open surgical thrombectomy for thrombosed arteriovenous hemodialysis graft. Siriraj Medical Journal, 71(6), 491-498. https://doi.org/10.33192/Smj.2019.73
- Quencer, K. B., & Oklu, R. (2017). Hemodialysis access thrombosis. Cardiovascular diagnosis and therapy, 7(Suppl 3), S299-S308. https://doi.org/10.21037/cdt.2017.09.08
- Roetker, N. S., Guo, H., Ramey, D. R., McMullan, C. J., Atkins, G. B., & Wetmore, J. B. (2022). Hemodialysis Access Type and Access Patency Loss: An Observational Cohort Study. Kidney medicine, 5(1), 100567. https://doi.org/10.1016/j.xkme.2022.100567
- Santoro, D., Benedetto, F., Mondello, P., Pipitò, N., Barillà, D., Spinelli, F., Ricciardi, C. A., Cernaro, V., & Buemi, M. (2014). Vascular access for hemodialysis: current

perspectives. International journal of nephrology and renovascular disease, 7, 281-294. https://doi.org/10.2147/IJNRD.S46643

- Smith, G. E., Gohil, R., & Chetter, I. C. (2012). Factors affecting the patency of arteriovenous fistulas for dialysis access. Journal of vascular surgery, 55(3), 849-855. https://doi.org/10.1016/j.jvs.2011.07.095
- Takahashi, E. A., Harmsen, W. S., & Misra, S. (2020). Endovascular Arteriovenous Dialysis Fistula Intervention: Outcomes and Factors Contributing to Fistula Failure. Kidney medicine, 2(3), 326-331. https://doi.org/10.1016/j.xkme.2020.02.004
- Tordoir, J. H., Bode, A. S., Peppelenbosch, N., van der Sande, F. M., & de Haan, M. W. (2009). Surgical or endovascular repair of thrombosed dialysis vascular access: is there any evidence?. Journal of vascular surgery, 50(4), 953-956. https://doi.org/10.1016/j.jvs.2009.06.058
- Wu, V., Kalva, S. P., & Cui, J. (2023). Thrombectomy approach for access maintenance in the end stage renal disease population: a narrative review. Cardiovascular diagnosis and therapy, 13(1), 265-280 https://doi.org/10.21037/cdt-21-523
- Zhang, L. H., Zhan, S., Wang, Y. Z., Xiao, G. H., & Liu, W. H. (2020). Comparison between endovascular versus hybrid thrombectomy for arteriovenous graft under complete ultrasound guidance. International angiology : a journal of the International Union of Angiology, 39(6), 532-541. https://doi.org/10.23736/S0392-9590.20.04423-5