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Abstract 
Background: Early detection of Sickle Cell Anemia (SCA) is 

crucial for timely intervention and effective disease 

management, particularly in vulnerable populations like 

the Nilgiri tribes. Traditional diagnostic methods can be 

time-consuming and require specialized expertise. Deep 

learning techniques have shown promise in automating 

early-stage detection, but there is a need for improved 

models to enhance accuracy and efficiency. This study 

aims to develop a novel deep learning model that 

leverages a Hybrid Swin Transformer-Based Recurrent 

Neural Network (RNN) integrated with an Improved 

Weighted Quantum Monkey Optimization (IWQMO) 

algorithm for early-stage prediction of SCA in the Nilgiri 

tribes. Methods: The proposed hybrid model combines the 

Swin Transformer’s hierarchical feature extraction with an 

RNN's temporal pattern recognition capabilities. The 

IWQMO algorithm is utilized to optimize feature 

selection, ensuring the most relevant attributes are 

prioritized for classification. The model is trained and 

evaluated on a dataset of 300 Nilgiri tribespeople's  

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

medical records provided by the NAWA-Nilgiri Adivasi 

Welfare Association. Performance metrics, including 

accuracy, precision, recall, and F1 score, were used to 

evaluate model efficacy. Results: The hybrid model 

demonstrated superior performance compared to 

traditional approaches. The Swin Transformer enhanced 

feature extraction, while the RNN improved temporal 

prediction. The IWQMO algorithm effectively selected the 

most pertinent features, contributing to a more accurate 

SCA classification. The model’s performance was 

benchmarked against existing techniques, showing 

improved accuracy, precision, and recall. Conclusion: The 

Hybrid Swin Transformer-RNN model integrated with the 

IWQMO algorithm significantly improves early prediction 

of SCA, outperforming traditional diagnostic methods. 

This approach has the potential to provide more timely 

and accurate predictions, leading to better healthcare 

outcomes for the Nilgiri tribes. The findings underscore 

the potential of deep learning techniques for advancing 

public health initiatives in vulnerable populations. 
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Introduction 

Sickle Cell Anemia (SCA) is a severe hereditary blood disorder 
caused by mutations in the HBB gene, which encodes the β-globin 
subunit of hemoglobin. This mutation results in the production of  
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an abnormal form of hemoglobin, known as hemoglobin S (HbS) 
(Lamoureux et al., 2024). Hemoglobin is a critical protein in red 
blood cells (RBCs) responsible for oxygen transport from the lungs 
to various tissues. In SCA, the altered HbS causes RBCs to assume 
a sickle or crescent shape under low oxygen conditions, leading to 
reduced cell flexibility. These malformed cells can obstruct narrow 
blood vessels, causing ischemia, pain, organ damage, stroke, and an 
increased susceptibility to infections (Sen et al., 2021). 
The clinical manifestations of SCA are highly variable, ranging from 
mild to severe symptoms. Chronic anemia, vaso-occlusive crises, 
acute chest syndrome, and splenic dysfunction are common 
complications. Additionally, individuals with SCA often experience 
reduced life expectancy due to the cumulative effects of these 
complications (Alzubaidi et al., 2020). Globally, SCA is among the 
most prevalent inherited blood disorders, with a significant burden 
in Sub-Saharan Africa, the Middle East, and India (Zhang et al., 
2020). Early diagnosis and comprehensive management are critical 
to improving patient outcomes and mitigating the disease's societal 
and economic impact. 
The Nilgiri tribes of Southern India represent a population 
disproportionately affected by SCA. These indigenous groups 
exhibit a high prevalence of the sickle cell trait (SCT), a 
heterozygous condition where individuals inherit one mutated 
HBB allele but typically remain asymptomatic (Jennifer et al., 2023). 
However, when two mutated alleles are inherited, the resulting 
homozygous condition manifests as SCA. The geographical 
isolation of the Nilgiri tribes and their limited access to healthcare 
resources exacerbate the impact of SCA on these communities 
(Tengshe et al., 2021). 
Healthcare challenges in the Nilgiri region include inadequate 
diagnostic infrastructure, low levels of disease awareness, and 
delayed medical interventions. Consequently, many cases of SCA 
remain undiagnosed until severe complications arise. This delay 
significantly increases morbidity and mortality rates (Bushra & 
Shobana, 2021). Moreover, socio-economic and environmental 
factors contribute to the disproportionate burden of SCA within 
these populations. 
Effective management of SCA begins with early and accurate 
diagnosis. Conventional diagnostic methods include hemoglobin 
electrophoresis, high-performance liquid chromatography 
(HPLC), and genetic testing (Dada et al., 2022). While these 
methods provide high diagnostic accuracy, they are often 
inaccessible to rural and tribal communities due to their cost and 
infrastructure requirements. The need for non-invasive, affordable, 
and scalable diagnostic tools is particularly acute in resource-
limited settings like the Nilgiris (Simon et al., 2023). 
A key obstacle in SCA diagnosis is the phenotypic overlap with 
other hemoglobinopathies, making differentiation challenging 
without advanced laboratory techniques. Additionally, the genetic 

and clinical variability of SCA complicates the development of 
universal diagnostic models. These challenges underscore the 
necessity for innovative approaches to SCA prediction and 
diagnosis (Ganesan & K, 2023). 
Recent advancements in artificial intelligence (AI) and machine 
learning (ML) have opened new avenues for addressing the 
limitations of traditional diagnostic methods. AI models, leveraging 
large datasets, can identify patterns and correlations that are 
imperceptible to human analysis. These technologies have 
demonstrated promising results in improving diagnostic accuracy, 
especially in resource-constrained settings (Alzubaidi et al., 2020). 
Deep learning techniques, such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), have been 
successfully applied to medical image analysis and time-series data 
in SCA diagnosis. For instance, automated segmentation and 
classification of RBCs using CNNs have achieved high accuracy in 
identifying sickled cells in blood smears (Zhang et al., 2020; 
Tengshe et al., 2021). Moreover, hybrid models combining CNNs 
with RNNs have shown potential for analyzing sequential data, such 
as temporal variations in hematological parameters (Deo et al., 
2024). 
Despite these advancements, existing AI-based models face 
challenges related to feature selection, model generalizability, and 
computational efficiency. Addressing these limitations is critical for 
developing practical and scalable solutions for SCA diagnosis (Chen 
et al., 2023). 
The high prevalence of SCA among the Nilgiri tribes, combined 
with the limitations of traditional diagnostic methods, motivates 
the exploration of AI-driven approaches for early and accurate 
disease prediction. This research aims to develop a Hybrid Swin 
Transformer-based RNN model optimized using the Improved 
Weighted Quantum Monkey Optimization (IWQMO) algorithm. 
The primary objectives include: 
Enhancing diagnostic accuracy through the integration of genetic, 
clinical, and demographic data. 
Improving model efficiency to enable deployment in resource-
constrained settings. 
Addressing feature selection challenges by leveraging the strengths 
of Swin Transformers and IWQMO algorithms. 
The proposed model seeks to bridge the gap between advanced 
diagnostic capabilities and accessibility, particularly for 
underserved populations like the Nilgiri tribes (Goswami et al., 
2024). 
This study has the potential to revolutionize SCA diagnosis and 
management in marginalized communities. Early and accurate 
prediction of SCA can significantly improve patient outcomes by 
enabling timely medical interventions. Moreover, reducing the 
economic burden associated with advanced-stage disease 



ANGIOTHERAPY                                                                                         RESEARCH 
 

https://doi.org/10.25163/angiotherapy.81210062                                                                                   1–15 | ANGIOTHERAPY| Published online December 03, 2024 
 

management can alleviate the strain on healthcare systems in 
resource-limited regions (Fu et al., 2024). 
From a broader perspective, this research contributes to the field of 
AI in healthcare by demonstrating the efficacy of hybrid models 
that combine multiple neural network architectures and 
optimization techniques. The integration of Swin Transformers, 
RNNs, and IWQMO offers a novel approach to feature extraction, 
temporal pattern recognition, and optimization, paving the way for 
future innovations in AI-based medical diagnostics (Nardo-Marino 
et al., 2022). 
The remainder of this paper is structured as follows: Section 2 
reviews related work, focusing on AI applications in SCA diagnosis 
and hybrid model development. Section 3 outlines the 
methodology, detailing the architecture of the proposed model and 
the IWQMO optimization process. Section 4 describes the 
experimental setup, including data collection and evaluation 
metrics. Section 5 presents the results and compares the proposed 
model's performance with existing approaches. Finally, Section 6 
concludes the paper and discusses future research directions. 
 
2. Related works 
Sickle cell anemia (SCA) is a genetic disorder characterized by the 
abnormal crescent or sickle shape of red blood cells (RBCs), which 
disrupts their ability to move efficiently through the bloodstream 
and significantly reduces oxygen delivery (Lamoureux et al., 2024). 
The distorted morphology of RBCs in SCA contributes to blocked 
blood vessels, resulting in various health complications (Sen et al., 
2021). Accurate classification of RBCs is essential for diagnosing 
SCA, as it facilitates the assessment of disease severity and guides 
treatment decisions (Alzubaidi et al., 2020). However, manual 
detection of SCA is labor-intensive and costly, necessitating the 
development of automated solutions. 
Advancements in medical image processing have highlighted the 
importance of semantic segmentation in identifying abnormalities 
with precision. Challenges such as noise, variations in cell shape, 
size, and viewpoint further complicate SCA diagnosis (Zhang et al., 
2020). Early detection of sickle cell disease (SCD) is crucial, 
particularly in newborns, to improve management and treatment 
outcomes. To address this, a deep learning (DL) and artificial 
intelligence (AI)-based framework has been proposed, ensuring 
human guidance throughout the diagnostic process (Jennifer et al., 
2023). 
The application of AI in healthcare has revolutionized SCA 
diagnosis by addressing the limitations of traditional screening 
methods, which are often inaccurate and time-consuming  
(Tengshe et al., 2021). A novel approach involving ResNet34, a 
high-throughput image analysis model, has shown promise in 
enhancing diagnostic accuracy (Sani et al., 2024). Furthermore, the 
acute reduction in hematocrit levels in sickle cell-associated anemia 

(SMA) is attributed to heightened phagocytic activity in the spleen, 
leading to distinct morphological changes in RBCs (Nardo-Marino 
et al., 2022). Automated systems for capturing and analyzing RBC 
images have been developed to streamline the diagnostic workflow 
(Deo et al., 2024). 
The spleen, a critical organ in combating bacterial infections, is 
significantly affected in SCA. Early life spleen injuries underscore 
the importance of measuring splenic function, with automated 
methods such as deep neural network analysis providing innovative 
solutions (Goswami et al., 2024). SCD arises due to the 
polymerization of sickle hemoglobin, which reduces RBC 
flexibility, causing vessel occlusion and severe morbidity (Chen et 
al., 2023). Holographic cytometry (HC), a label-free imaging 
modality, has been utilized for comprehensive RBC morphological 
profiling to detect SCD (Manescu et al., 2020). 
Machine vision techniques applied to blood films have emerged as 
scalable diagnostic tools, particularly in resource-constrained 
settings. However, the lack of object-level annotations of disease 
markers, including parasites and abnormal RBCs, remains a 
bottleneck for successful implementation (Fu et al., 2024). AI has 
also demonstrated transformative potential in ophthalmology and 
other fields, streamlining disease diagnosis and management 
(Parmar et al., 2024). 
In pediatric populations, splenomegaly—a common complication 
of SCD—requires precise measurement through advanced imaging 
techniques. Deep learning methods for automated spleen length 
measurement in 2D ultrasound imaging offer a promising 
alternative to traditional manual palpation (Yuan et al., 2020). 
Additionally, innovative approaches such as microstrip isoelectric 
focusing (mIEF) have demonstrated efficacy in detecting 
hemoglobin species, complementing conventional hematology 
analyzers (Koua et al., 2024). 
Comprehensive patient data collection during medical procedures 
enhances diagnostic accuracy and supports clinical decision-
making. This data may include observed symptoms, preliminary 
findings, or detailed laboratory results (Gaikwad et al., 2024). By 
integrating DL and AI techniques, researchers aim to improve SCA 
diagnosis, classification, and treatment outcomes (Dada et al., 
2022). Explainable AI models have further expanded our 
understanding of RBC abnormalities, aiding in the development of 
targeted therapies for SCD (Das et al., 2024). 
In conclusion, advancements in AI and DL have paved the way for 
more accurate and efficient diagnostic tools for SCD. These 
innovations address the limitations of traditional methods, offering 
scalable and precise solutions for early detection and management. 
 
3. Proposed model 
The proposed model employs a hybrid approach combining the 
Swin Transformer and a Recurrent Neural Network (RNN), 
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enhanced by the Improved Weighted Quantum Monkey 
Optimization (IWQMO) algorithm (Figure 1, Figure 2). This 
integration leverages the strengths of each component to achieve 
high accuracy in analyzing complex medical data, specifically for 
conditions like sickle cell anemia (SCA). 
The Swin Transformer, an advanced neural network architecture 
originally developed for image processing, excels in extracting 
hierarchical and spatial features from intricate datasets. Its ability to 
handle multi-scale information makes it a powerful tool for medical 
data analysis, enabling superior feature extraction compared to 
traditional models. 
The Recurrent Neural Network (RNN), on the other hand, is adept 
at capturing temporal patterns in sequential data. This capability is 
essential for analyzing the progression of SCA symptoms over time 
or identifying relationships between genetic markers and clinical 
manifestations. By integrating the Swin Transformer with RNN, the 
hybrid model can simultaneously process spatial and temporal data, 
making it highly effective for predicting complex medical 
conditions such as SCA. A schematic representation of the model 
architecture is depicted in Figure. 1. 
To optimize performance further, the Improved Weighted 
Quantum Monkey Optimization (IWQMO) algorithm is utilized 
for feature selection. In medical data analysis, selecting the most 
relevant and informative features is critical to reducing 
computational complexity and enhancing predictive accuracy. The 
IWQMO algorithm incorporates quantum-inspired computing 
and weighted optimization techniques to excel in handling high-
dimensional data. Its advanced mechanism effectively avoids local 
minima, ensuring robust optimization even in challenging datasets. 
This hybrid approach, combining Swin Transformer, RNN, and 
IWQMO, provides a comprehensive solution for spatial-temporal 
feature analysis and optimized feature selection, paving the way for 
improved diagnostic accuracy in SCA and other complex medical 
conditions. 
3.1 Data Collection 
The dataset utilized in this research consists of medical records 
from 300 patients belonging to the Nilgiri tribes, with a specific 
focus on individuals diagnosed with Sickle Cell Anemia (SCA). 
These records were sourced from the NAWA-Nilgiri Adivasi 
Welfare Association. 
 
Let the dataset DDD comprise n=300n = 300n=300 patients, where 
each patient’s data is represented as: 

D =  {(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … . . , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)}                                      (1)  
Where xi =  {𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … . , 𝑥𝑥𝑖𝑖14} represents the features for patient I, 
yi  ∈  {0, 1} represents the SCA label (1 if the patient has SCA, 0 
otherwise). 
To ensure the robustness of the model, the dataset is split into two 
parts: 

• Training set (60%): Dtrain is used to train the model. 
• Testing set (40%): Dtest is used to evaluate the model’s 

performance on unseen data. 
Mathematically, the split can be represented as: 

Dtrain =  {(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) | 𝑖𝑖 = 1, 2, … . , 180    }                                    (2) 
Dtest = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) | 𝑖𝑖 = 181, 182, … . , 300}                                (3)  
3.2 Data Preprocessing 
3.2.1 Data Cleaning 
Data cleansing involves addressing missing, inconsistent, or 
incorrect data within a dataset to ensure its quality and reliability. 
Missing data can be managed through various imputation 
techniques, tailored to the nature of the feature: 
Numerical Features: Imputation is typically performed using 
statistical measures such as the mean, median, or mode. 
Categorical Features: Imputation is carried out using the most 
frequent category within the feature. 
Let xijx_{ij}xij represent the value of feature jjj for patient iii. If 
xijx_{ij}xij is missing, the imputed value x^ij\hat{x}_{ij}x^ij can be 
computed as: 
 
𝑥𝑥�𝑖𝑖𝑖𝑖 = 1

𝑛𝑛
∑ 𝑥𝑥𝑘𝑘𝑖𝑖𝑛𝑛
𝑘𝑘=1                                                              (4)  

Where n is the number of patients with non-missing values for 
feature j. 
If 𝑥𝑥𝑖𝑖𝑖𝑖  is categorical, it can be imputed using: 

𝑥𝑥�𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑥𝑥1𝑖𝑖 , 𝑥𝑥2𝑖𝑖 , … . . , 𝑥𝑥𝑛𝑛𝑖𝑖�                                             (5) 
Outliers can also be detected and removed using statistical 
measures such as the Z-score: 
𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−𝜇𝜇𝑖𝑖

𝜎𝜎𝑖𝑖
                                                                   (6)  

Where 𝜇𝜇𝑖𝑖  and 𝜎𝜎𝑖𝑖 are the mean and standard deviation of feature j. 
If �𝑍𝑍𝑖𝑖𝑖𝑖� > 3, then xij is considered an outlier and can be removed or 
replaced.  
3.2.2 Normalization 
Normalization is used to guarantee equality of contributions from 
all features to the model and to enhance the convergence speed. 
This step scales the features so that they lie within a specific range, 
usually between 0 and 1. Min-max normalization is applied to each 
feature xij as: 

xij′ = 𝑥𝑥𝑖𝑖𝑖𝑖−min(𝑥𝑥𝑖𝑖)

max�𝑥𝑥𝑖𝑖�−min (𝑥𝑥𝑖𝑖)
                                                 (7)  

Where min (𝑥𝑥𝑖𝑖) and max (𝑥𝑥𝑖𝑖) are the minimum and maximum 
values of feature j across all patients. This transformation  
 
ensures that all features are on the same scale, which is particularly 
important where raining machine learning models. 
Alternatively, Z-score normalization can be used: 

xij′ =
𝑥𝑥𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝜎𝜎𝑖𝑖

                                                     (8) 

Where 𝜇𝜇𝑖𝑖  is the mean and 𝜎𝜎𝑖𝑖  is the standard deviation of feature j. 
This method centers the data around zero with a standard deviation 
on one.  
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3.2.3 Data Augmentation 
Data augmentation is utilized to address class imbalances, such as 
when the number of SCA patients significantly differs from non-
SCA patients. To mitigate this disparity, the following techniques 
are applied: 

• Synthetic Minority Over-sampling Technique 
(SMOTE): This method generates synthetic samples for 
the minority class by interpolating between existing data 
points, enhancing class representation. 

• Random Oversampling/Undersampling: This technique 
balances the dataset by either duplicating samples from 
the minority class (oversampling) or reducing samples 
from the majority class (undersampling). 

Let Dminority be the set of minority class samples (SCA-positive 
patients). For each sample xi  ∈ 𝐷𝐷𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚, SMOTE generates a 
synthetic sample xsyn as: 
xsyn = 𝑥𝑥𝑖𝑖 +  𝜆𝜆 ∙ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖)                                        (9)  
Where 𝑥𝑥𝑖𝑖 is a randomly selected neighbor of 𝑥𝑥𝑖𝑖, and 𝜆𝜆 is a random 
number between 0 and 1. 
The goal is to balance the class distribution so that both classes 
(SCA and non-SCA) have approximately the same number of 
samples, improving the model’s ability to predict minority class 
cases. 
This step-by-step covers the detailed aspects of data collection and 
preprocessing, along with mathematical formulations for handling 
missing data, normalizing features, and augmenting the dataset. 
3.3 Feature Selection Using IWQMO 
The Improved Weighted Quantum Monkey Optimization 
(IWQMO) is an advanced feature selection technique inspired by 
the behavior of monkeys climbing trees, integrated with quantum 
principles such as superposition and entanglement. This algorithm 
aims to identify the most relevant features for predicting Sickle Cell 
Anemia (SCA) by optimizing the feature space. The primary goal of 
IWQMO is to reduce the dataset’s dimensionality, which, in turn, 
lowers computational complexity while preserving high prediction 
accuracy. 
3.3.1 Objective: Feature Selection for Dimensionality Reduction 
The core objective of IWQMO is to identify a subset of relevant 
features Fselected⊆FF_{\text{selected}} \subseteq FFselected⊆F, 
where FFF represents the complete set of features. This subset must 
optimize the prediction of SCA while eliminating unnecessary or 
redundant features. Formally, this can be expressed as a multi-
objective optimization problem: 
min
𝑆𝑆
𝑓𝑓𝑑𝑑𝑖𝑖𝑚𝑚(𝑆𝑆), max

𝑆𝑆
𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆)                            (10)  

Where: S is a binary vector indicating whether a feature is selected 
(Si = 1) or not (Si = 0), 𝑓𝑓𝑑𝑑𝑖𝑖𝑚𝑚(𝑆𝑆) measures the number of selected 
features (dimensionality reduction), 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆) represents the model’s 
accuracy based on the selected feature subset. 
3.3.2 Quantum-Inspired Optimization 

The IWQMO leverages quantum-inspired behaviors, enabling the 
algorithm to explore the feature space more efficiently than 
traditional optimization methods. The key quantum principles 
integrated into IWQMO include: 
Quantum Superposition 
Quantum superposition allows the algorithm to simultaneously 
represent multiple states (feature selection choices), enhancing the 
efficiency of the search process without requiring exhaustive 
evaluation of every possible feature combination. 
In this framework, each feature is represented as a quantum bit 
(qubit), with the probability amplitudes αi\alpha_iαi and 
βi\beta_iβi signifying the likelihood of selecting or not selecting 
feature iii, respectively. The quantum state of each feature is 
expressed as: 

|ψi ≻ αi|0 ≻ + 𝛽𝛽i|1 ≻                                                    (11)  
Where: |αi|2 is the probability of not selecting the feature i(0), |𝛽𝛽i|2 
is the probability of selecting the feature i(1).  
To maintain normalization, the sum of the squares of the 
probabilities must equal 1: 

|αi|2 +  |βi|2 = 1                                                        (12)  
Quantum Entanglement 
Quantum entanglement links the selection of related features. This 
is useful in feature selection, as certain features may be highly 
correlated with one another. When one feature is selected, it 
influences the selection probability of related features. 
Mathematically, the quantum state of two entangled features i and 
j is represented as: 
�ψij ≻ αij�00 ≻ + 𝛽𝛽ij|11 ≻                                              (13)  
This indicates that the decision to select feature i(1) may depend on 
the selection of feature j(1), and similarly for their non-selection (0). 
3.3.3 Weighted Optimization 
IWQMO enhances the selection process by assigning weights to 
features based on their contribution to the prediction of SCA. These 
weights guide the search process, ensuring that the algorithm 
focuses on the most informative features. The weighted selection 
can be defined as an optimization of the following objective 
function: 
maximize fweighted(𝑆𝑆) =  ∑ 𝑤𝑤𝑖𝑖𝑆𝑆𝑖𝑖  𝑚𝑚

𝑖𝑖=1                                         (14)  
where 𝑤𝑤𝑖𝑖  is the weight of feature i, representing its importance 
(derived from prior knowledge, statistical analysis, or preliminary 
runs of the model), 𝑆𝑆𝑖𝑖  is the binary decision variable that indicates 
whether feature i is selected (Si = 1) or not (𝑆𝑆𝑖𝑖 = 0). 
Weight Calculation 
The weight of each feature 𝐰𝐰𝐢𝐢 can be calculated based on various 
metrics such as mutual information, correlation with the target 
variable, or using feature importance from a preliminary machine 
learning model. A common choice is the mutual information 
between feature 𝑿𝑿𝒊𝒊 and label Y (SCA status): 
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Where 𝑰𝑰(𝑿𝑿𝒊𝒊,𝒀𝒀) represents the mutual information between feature 
𝐗𝐗𝐢𝐢 and the target Y, which quantifies how much information 𝐗𝐗𝐢𝐢 
provides about Y. 
3.3.4 Optimization Process 
The IWQMO algorithm proceeds by iteratively adjusting the 
probabilities associated with each feature’s selection, aiming to 
maximize the prediction accuracy while minimizing the number of 
selected features. 

1. Initialization: 
Initialize the quantum states  |ψi ≻ αi|0 ≻ + 𝛽𝛽i|1 ≻ for each 
feature, where αi and βi are initially random values that satisfy the 
normalization condition. 

2. Probabilistic Feature Selection: 
At each iteration, collapse the quantum states into classical states by 
randomly selecting features based on their probabilities: 

Si =  �1   𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑤𝑤𝑦𝑦 |βi|2

0  𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑤𝑤𝑦𝑦 |αi|2
               (15)  

3. Fitness Evaluation: 
Evaluate the fitness of the selected subset S using a fitness function 
𝑓𝑓(𝑆𝑆), which could be a weighted combination of accuracy and 
number of features selected: 
f(S) =  𝜆𝜆 .𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝐴𝐴𝑦𝑦(𝑆𝑆) − (1 −  𝜆𝜆). |𝑆𝑆|

𝑚𝑚
                                        (16)  

where |𝑆𝑆| is the number of selected features and 𝜆𝜆 is a weight 
balancing the importance of accuracy and feature reduction.  

4. Quantum State Update: 
Based on the fitness of the selected features, update the quantum 
probabilities αi and βi using the rule: 
𝛼𝛼𝑖𝑖

(𝑚𝑚+1) ∙  𝛼𝛼𝑖𝑖
(𝑚𝑚) ∙ cos(𝜃𝜃𝑖𝑖) + 𝛽𝛽𝑖𝑖

(𝑚𝑚) ∙ sin(𝜃𝜃𝑖𝑖)                                        (17) 
𝛽𝛽𝑖𝑖

(𝑚𝑚+1) ∙  𝛽𝛽𝑖𝑖
(𝑚𝑚) ∙ cos(𝜃𝜃𝑖𝑖) − 𝛼𝛼𝑖𝑖

(𝑚𝑚) ∙ sin(𝜃𝜃𝑖𝑖)                                        (18) 
Where 𝜃𝜃𝑖𝑖  is a learning rate parameter that control how aggressively 
the algorithm adjusts the probabilities based on the performance of 
feature i. 
 
Convergence: 
Repeat steps 2 to 4 until convergence, which occurs when the 
changes in the selected features between iterations become 
negligible, or the fitness function stabilizes. 
The final output of the IWQMO algorithm is the optimal subset of 
features Fselected, which enhances the model’s performance while 
reducing computational complexity. This subset is used for further 
stages in the model, such as classification with a hybrid Swin 
Transformer and RNN. 
3.4 Swin Transformer for Feature Extraction 
The Swin Transformer is a state-of-the-art deep learning 
architecture originally designed for computer vision tasks but is also 
highly effective for structured datasets. In the context of Sickle Cell 
Anemia (SCA) prediction, the Swin Transformer offers an efficient 
approach to feature extraction by capturing both local and global 
dependencies within the data. 

3.4.1 Swin Transformer Architecture 
The Swin Transformer is built with several layers and mechanisms 
that allow it to efficiently extract features from structured input 
data. Its hierarchical design enables the progressive aggregation of 
information across different scales, making it capable of modeling 
both local and global dependencies effectively. 
Hierarchical Structure 
The Swin Transformer divides the input feature space into smaller 
patches and applies attention within each patch. This hierarchical 
structure allows the model to process local features from these small 
patches and progressively combine them, facilitating the formation 
of a global understanding of the dataset. 
The hierarchical representation of the features can be expressed as: 

X(𝑙𝑙+1) = 𝑃𝑃𝑝𝑝𝑤𝑤𝐴𝐴ℎ𝑀𝑀𝑚𝑚𝑝𝑝𝑀𝑀𝑚𝑚 (𝑋𝑋(𝑙𝑙))                                        (19)  
Where 𝑋𝑋(𝑙𝑙) represents the feature map at layer l, PatchMerge is an 
operation that aggregates smaller patches to create a coarser-level 
feature map at the next layer. 
The hierarchical nature of Swin Transformer is crucial because it 
allows for both local contextual understanding (from small 
patches) and global contextual understanding (from merged 
patches). 
3.4.2 Sliding Window Attention Mechanism 
A key innovation of the Swin Transformer is the sliding window 
attention mechanism. This approach divides the input data into 
non-overlapping windows (patches) and computes self-attention 
within each window. It is particularly effective for feature extraction 
in medical datasets, capturing intricate patterns such as correlations 
between genetic markers and demographic features. 
Chapter 1 Self-Attention Mechanism 
At the core of the Swin Transformer is the self-attention 
mechanism, which computes a matrix sum of the input features, 
assigning weights based on the significance of each feature relative 
to others. This allows the model to focus on the most relevant 
features when making predictions. The standard formulation of 
self-attention is: 

Z = softmax �𝑄𝑄𝑄𝑄
⊺

�𝑑𝑑𝑘𝑘
� 𝑉𝑉                                               (20)  

Where Q = XWq are the queries, K = XWk are the keys, and V =
XWV are the values, with X representing the input data and 
WQ, Wk, WV being the learned projecting matrices, dk is the 
dimensionality of the queries and keys, Z is the output of the 
attention mechanism, representing a weighted sum of the value 
vectors V. 
In the case of the Swin Transformer, the self-attention is applied 
within each sliding window. Let’s denote the feature set within a 
sliding window w as Xw. The self-attention within a window w is: 

Zw = softmax �𝑄𝑄𝑤𝑤𝑄𝑄𝑤𝑤
⊺

�𝑑𝑑𝑘𝑘
� 𝑉𝑉𝑤𝑤                                              (21)  

Where Qw, Kw, Vw are the queries, keys and values for the patch of 
features within window w. 
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Sliding Window Mechanism 
To ensure comprehensive coverage of the entire feature set, the 
Swin Transformer utilizes a sliding window mechanism. This 
mechanism shifts windows across the feature space, ensuring that 
each feature is attended to while maintaining computational 
efficiency. Mathematically, the shifting operation can be described 
as: 

X𝑤𝑤
(𝑙𝑙) = 𝑋𝑋(𝑙𝑙)[𝑠𝑠: 𝑆𝑆 + 𝑤𝑤]                                                   (22)  

Where s is the starting index and w is the window size. The attention 
is computed within this window, and then the window is slid across 
the input features. 
3.4.3 Multi-Head Attention and Layer Normalization 
To enhance the feature extraction process, the Swin Transformer 
employs multi-head attention. Rather than relying on a single 
attention mechanism, multiple attention "heads" are applied 
simultaneously, with each head capturing different relationships 
between the features. This approach enables the model to generate 
more comprehensive and richer feature representations. 
Mathematically, the output of the multi-head attention mechanism 
can be described as: 

𝑍𝑍 = 𝐶𝐶𝑚𝑚𝐶𝐶𝐴𝐴𝑝𝑝𝑤𝑤 (𝑍𝑍1,𝑍𝑍2, … . ,𝑍𝑍ℎ)𝑊𝑊𝑂𝑂                                            (23)  
Where h is the number of attention heads, 𝑍𝑍𝑖𝑖 is the output of the 
attention mechanism for head i, 𝑊𝑊𝑂𝑂 is a learned projection matrix 
that combines the outputs of all attention heads.  
The output of the multi-head attention is passed through a layer 
normalization operation to stabilize the training process. The layer 
normalization is defined as: 
 
X� =  𝑋𝑋− 𝜇𝜇

𝜎𝜎+ 𝜖𝜖
                                                           (24)  

Where 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of the input 
feature, 𝜖𝜖 is a small constant to prevent division by zero, X� is the 
normalized output. 
3.4.4 Feedforward Network and Non-Linear Activation 
After the multi-head attention and layer normalization processes, 
the Swin Transformer employs a position-wise feedforward 
network (FFN) to refine the accuracy of the extracted features. The 
FFN consists of two fully connected layers, with a ReLU activation 
function applied between them to introduce non-linearity and 
enhance feature representation. 

F(X) = 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 (𝑋𝑋𝑊𝑊1 + 𝑝𝑝1)𝑊𝑊2𝑝𝑝2                                        (25)  
Where: 𝑊𝑊1 are 𝑊𝑊2 the weights matrices for the two layers, 𝑝𝑝1, 𝑝𝑝2 are 
the bias terms, ReLU is the rectified linear using activation function, 
defined as: 

ReLU (x) = max(0, 𝑥𝑥)                                                 (26)  
The output of the FFN is added to the input (via a residual 
connection) and passed through another layer normalization step: 
X(𝑙𝑙+1) = 𝑅𝑅𝑝𝑝𝑦𝑦𝑚𝑚𝑝𝑝𝐿𝐿𝑚𝑚𝑝𝑝𝑚𝑚 (𝑋𝑋(𝑙𝑙) + 𝐹𝐹�𝑋𝑋(𝑙𝑙)�)                                        (27)  
This process ensures that the model captures both linear and non-
linear dependencies among the features. 

The final output of the Swin Transformer consists of high-
dimensional feature vectors that encapsulate rich representations of 
the input data. These vectors contain hierarchical information 
derived from local feature patches (via the sliding window 
attention) and global dependencies (through the hierarchical 
structure). Optimized for Sickle Cell Anemia (SCA) prediction, 
these vectors provide the next stage of the model with robust, 
abstracted representations of the data. 
Through multiple layers of self-attention, multi-head attention, and 
feedforward networks, the Swin Transformer progressively extracts 
higher-level representations of the data. The sliding window 
attention mechanism ensures efficient feature extraction, while the 
hierarchical structure effectively captures both local and global 
feature dependencies. The output is a set of high-dimensional 
feature vectors, which are ready for further processing by the 
Recurrent Neural Network (RNN) in the next stage. 
3.5 Temporal Pattern Recognition Using Recurrent Neural 
Network (RNN) 
The Recurrent Neural Network (RNN) plays a crucial role in 
modeling temporal dependencies and patterns within the dataset 
for predicting Sickle Cell Anemia (SCA). In medical applications 
such as SCA prediction, it is vital to consider the progression of 
symptoms or changes in patient features over time. RNNs are 
specifically designed to handle sequential data, making them ideal 
for recognizing patterns that evolve over time. 
3.5.1 RNN for Temporal Analysis 
Sequential Data Representation 
In the context of SCA prediction, the features collected over time 
from patients—such as medical test results, clinical symptoms, and 
genetic markers—form a temporal sequence. The RNN processes 
this sequential input, leveraging the temporal order of the features 
to make predictions. 
The sequence of input data can be represented as: 

X =  {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇}                                                    (28)  
Where 𝑥𝑥𝑇𝑇 the input feature vector at time step t, T is is the total 
number of time steps or feature over time.  
The goal of the RNN is to predict the likelihood of SCA based on 
this sequential data by capturing the relationships between the 
features at different time steps. 
3.5.2 RNN Architecture 
The basic structure of an RNN consists of a sequence of 
interconnected layers, where each layer (or time step) receives input 
from the previous layer as well as the current input feature. This 
architecture allows the RNN to "remember" past information and 
incorporate it into future predictions. 
At each time step t, the RNN updates its hidden state based on both 
the current input 𝑥𝑥𝑇𝑇 and the previous state ht−1. The hidden state 
serves as the network’s memory, enabling it to store information 
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about past inputs. Mathematically, the hidden state update is given 
by: 

ht =  𝜎𝜎(𝑊𝑊ℎℎ𝑚𝑚−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑇𝑇 + 𝑝𝑝ℎ)                                        (29)  
Where,  𝑊𝑊ℎ  is the weight matrix for the hidden state, 𝑊𝑊𝑥𝑥 is the 
weight matric for the input, 𝑝𝑝ℎ  is the bias term, 𝜎𝜎  is the activation 
function. 
The RNN processes the input sequence one step at a time, updating 
its hidden state at each step. This process enables the network to 
retain information about previous inputs while focusing on the 
current input. 
3.5.3 Backpropagation Through Time (BPTT) 
A key component in training an RNN is Backpropagation Through 
Time (BPTT). Unlike feedforward networks, where gradients are 
calculated with respect to individual layers, RNNs propagate errors 
back through the entire sequence of time steps to update the 
weights. 
In BPTT, the network first computes the error at the final time step 
TTT and then propagates this error backward through the sequence 
of preceding time steps. This allows the network to adjust the 
weights based on the full sequence of inputs, rather than just 
individual time steps. The error at each time step ttt is computed as: 
δt =  𝜕𝜕𝜕𝜕

𝜕𝜕ℎ𝑡𝑡
=  𝜕𝜕𝑚𝑚+1  ∙ 𝑊𝑊ℎ

𝑇𝑇  ∙  𝜎𝜎′(ℎ𝑚𝑚)                                          (30)  

 
Where L is the loss function, 𝜎𝜎′(ℎ𝑚𝑚) is the derivative of the 
activation function, δt and is the gradient of the loss with respect to 
the hidden state at time step t. 
The network updates its weights using these gradients to minimize 
the loss function across the entire sequence. 
Handling Vanishing/Exploding Gradients 
One of the challenges associated with BPTT is the 
vanishing/exploding gradient problem, where gradients either 
shrink to near zero or grow uncontrollably as they propagate 
through time. This can hinder efficient learning and lead to poor 
model performance. To address this issue, architectures such as 
Long Short-Term Memory (LSTM) and Gated Recurrent Units 
(GRU) incorporate gating mechanisms that regulate the flow of 
information, preventing gradients from vanishing or exploding and 
enabling stable training. 
3.5.4 Sequence Handling and Prediction 
The RNN is specifically designed to process sequential data, making 
it well-suited for capturing the temporal progression of SCA 
symptoms or the time-based relationships between clinical features. 
At each time step, the RNN generates an output based on the 
current hidden state. The final output consists of a sequence of 
predictions, each reflecting the likelihood of a patient having SCA 
at a given time. 
The output at each time step ttt is calculated as: 
yt = 𝑊𝑊𝑚𝑚ℎ𝑚𝑚 + 𝑝𝑝𝑚𝑚                                                       (31)  
Where, Wy is the weight matrix for the output, by is the bias term.  

For SCA prediction, the output sequence can be interpreted as a 
probability distribution over the possible outcomes (e.g., SCA-
positive or SCA-negative). The final prediction for the entire 
sequence is typically derived from the last hidden state or a 
weighted combination of the outputs across all time steps. 
3.5.5 Output: Sequence of Predictions 
The RNN generates a sequence of predictions y1,y2,…,yTy_1, y_2, 
\dots, y_Ty1,y2,…,yT, where each yty_tyt represents the likelihood 
of the patient having SCA at time step ttt. In practice, this sequence 
of outputs is often aggregated to make a final classification decision. 
One common approach is to use the output at the final time step 
TTT as the model's prediction for the entire sequence. 
Mathematically, the final prediction can be expressed as: 
y� = sigmoid (Wyℎ𝑇𝑇 + 𝑝𝑝𝑚𝑚)                                                    (32)  
Where y� is the predicted probability of SCA for the patient, and the 
sigmoid function ensures that the output is a probability between 0 
and 1. 
The Recurrent Neural Network (RNN) plays a pivotal role in 
temporal pattern recognition within the proposed model for 
predicting Sickle Cell Anemia (SCA) in the Nilgiri tribes. By 
efficiently handling sequential data and capturing the progression 
of symptoms over time, the RNN enables the model to make 
accurate predictions based on the evolving clinical and genetic 
features. 
3.6 Hybrid Model Integration 
The proposed hybrid architecture for SCA prediction combines the 
Swin Transformer for spatial feature extraction with the Recurrent 
Neural Network (RNN) for temporal pattern recognition. This 
integration is designed to capture both spatial and hierarchical 
dependencies in the data, as well as the time-based progression of 
SCA symptoms. By leveraging both components, the hybrid model 
provides a comprehensive framework that enhances prediction 
accuracy and uncovers complex relationships within the dataset. 
3.6.1 Feature Integration 
The first step in integrating the hybrid model involves feature 
integration. The features selected by the Improved Weighted 
Quantum Monkey Optimization (IWQMO) are input into the Swin 
Transformer, which extracts both hierarchical and spatial features. 
These extracted features are then passed to the RNN, allowing the 
model to capture the temporal relationships between them. 
Formally, let: 

• 𝑋𝑋 =  {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇} be the sequence of input features 
after selection by IWQMO. 

• 𝑇𝑇 be the number of time steps, representing sequential 
data points. 

• xt be the feature vector at time step t.   
 
 
 



ANGIOTHERAPY                                                                                         RESEARCH 
 

https://doi.org/10.25163/angiotherapy.81210062                                                                                   1–15 | ANGIOTHERAPY| Published online December 03, 2024 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Overall Architecture of Proposed Model 
 

 
Figure 2. Flowchart of Improved Weighted Quantum Monkey Optimization 
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Figure 3. Training and Validation Loss 
 

 
Figure 4. Training and Validation Accuracy 
 
 

 
Figure 5. Confusion Matrix 
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Figure 6. Overall Comparison of Performance Metrics 
 
Table 1. Training and Validation Performance Metrics 
 

Epoch Training Loss Training 
Accuracy (%) 

Validation 
Loss 

Validation 
Accuracy 
(%) 

1 0.425 85.60 0.410 86.10 
2 0.350 89.20 0.345 89.50 
3 0.280 92.30 0.290 91.80 
4 0.240 94.10 0.250 93.20 
5 0.195 95.50 0.215 94.40 
6 0.165 96.20 0.190 95.20 
7 0.140 96.80 0.170 96.00 
8 0.120 97.40 0.155 96.40 
9 0.105 97.90 0.140 97.00 
10 0.090 98.56 0.125 97.80 

 
Table 2. Overall Comparison of Performance Metrics 

Models Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
ELM [12] 93.91 92.50 91.00 91.75 
ACPSSNet [13] 94.24 93.00 92.50 92.75 
SCScreen [14] 94.81 94.00 93.00 93.50 
MILISMA [17] 95.72 95.00 94.00 94.50 
Grad-CAM [15] 96.47 96.00 95.00 95.50 
Hybrid Swin Transformer-RNN-IWQMO [Proposed] 98.56 98.00 97.00 97.50 
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These input features are first processed by the Swin Transformer for 
spatial feature extraction before being passed to the RNN for 
temporal pattern recognition. 
3.6.2 Swin Transformer for Spatial Feature Extraction 
The Swin Transformer processes the input feature vectors xtx_txt 
through a sliding window mechanism to capture hierarchical 
spatial dependencies. The input data is divided into smaller patches, 
with attention applied within each patch to extract meaningful 
patterns. At each time step ttt, the output of the Swin Transformer 
is a high-dimensional feature vector ztz_tzt, which encapsulates 
rich spatial information. 
For each input feature vector xtx_txt, the Swin Transformer 
processes it through multiple layers, and the final output can be 
expressed as: 

zt = 𝑓𝑓𝑆𝑆𝑤𝑤𝑖𝑖𝑛𝑛(𝑥𝑥𝑚𝑚)                                                              (33)  
𝑓𝑓𝑆𝑆𝑤𝑤𝑖𝑖𝑛𝑛 denotes the swin transformer function that extracts spatial 
features and zt is the high-dimensional spatial feature vector at time 
step t. 
The Swin Transformer captures intricate spatial relationships 
between features such as clinical symptoms, genetic markers, and 
demographic details, which are crucial for SCA prediction. 
 
3.6.3 Recurrent Neural Network for Temporal Pattern Recognition 
The output feature vectors from the Swin Transformer, zt, are then 
fed into the RNN to capture the temporal relationships between 
them. The RNN processes thes features sequentially and updates its 
hidden state at each time step based on both the current spatial 
feature vector zt and the previous hidden state ht−1. 
The hidden state update at each time step t is given by: 

ht =  𝜎𝜎 (𝑊𝑊ℎℎ𝑚𝑚−1 + 𝑊𝑊𝑧𝑧𝑧𝑧𝑚𝑚 + 𝑝𝑝ℎ)                                            (34)  
Where, 𝑊𝑊ℎ  is the weight matrix for the hidden state, 𝑊𝑊𝑧𝑧  is the 
weight matrix for the spatial feature input from the Swin 
Transformer, 𝑝𝑝ℎ is the bias term, 𝜎𝜎 is the activation function 
(typically tanh). 
The RNN outputs a sequence of hidden states h1, h2, … , hT, 
capturing the temporal progression of the spatial features over time. 
This process allows the network to understand how SCA-related 
features evolve and interact over time, which is  critical for accurate 
disease prediction. 
3.6.4 Hybrid Architecture 
The hybrid model combines the spatial feature extraction 
capabilities of the Swin Transformer with the temporal pattern 
recognition abilities of the RNN. This integration allows the model 
to learn intricate spatial relationships between features and capture 
how these relationships evolve over time. 
The hybrid architecture can be described through the following 
sequence of operations: 

1. Input Features: The input features xt, selected by 
IWQMO, are passed into the Swin Transformer for spatial 
feature extraction. 

zt = 𝑓𝑓𝑆𝑆𝑤𝑤𝑖𝑖𝑛𝑛(𝑥𝑥𝑚𝑚)                                                        (35) 
2. Temporal Processing: The extracted spatial features 𝑧𝑧𝑚𝑚 are 

then fed into the RNN, which processes them sequentially 
and updates its hidden state at each time step. 

ht =  𝜎𝜎 (𝑊𝑊ℎℎ𝑚𝑚−1 + 𝑊𝑊𝑧𝑧𝑧𝑧𝑚𝑚 + 𝑝𝑝ℎ)                                        (36)  
3. Final Output: The final hidden state hT, which represents 

the accumulated information from the entire sequence, is 
passed through a fully connected layer to generate a final 
prediction score y�. 

y� = sigmoid �Wyℎ𝑇𝑇 + 𝑝𝑝𝑚𝑚�                                              (37)  
Here, y� represents the predicted probability of the patient having 
Sickle Cell Anemia. The sigmoid activation ensures that the output 
is a probability between 0 and 1, suitable for binary classification. 
The flowchart of IWQMO is shown in Figure 2. 
Transition Procedure for Hybrid Swine Transformer-Based RNN 
with IWQMO 
Input Parameters: 

• Differentiation constant: λ ϵ [0, 1] 
• Population: P 
• Optimization values for population: OP 
• Quantum jump rate: q 
• Quantum weighting factor: wq 
• Current number of evaluations: E 

Outputs:  
• Updated population P 
• Updated number of evaluations E 

Phase 1: Initialization and Quantum Jump Calculation 
1. Initialize Population: 

• Randomly generate an initial population P =
 {𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝑁𝑁} with optimization values  

OP =  {𝑚𝑚𝑝𝑝1, 𝑚𝑚𝑝𝑝2, … , 𝑚𝑚𝑝𝑝𝑁𝑁}                                            (38)  
2. Quantum Weight Adjustment: 

• For each individual pj 𝜖𝜖 𝑃𝑃, Calculate the 
weighted quantum jump rate qj as: 

qj = 𝑤𝑤𝑞𝑞 ×  𝑚𝑚𝑝𝑝𝑖𝑖
∑ 𝑚𝑚𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1

                                                (39)  

• Adjust the quantum state qsj based on qj and a 
random number rj  ∈ [0,1]: 

qsj =

 �
𝑝𝑝𝑖𝑖 +  𝜆𝜆 (𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 − 𝑝𝑝𝑖𝑖,                                         𝑖𝑖𝑓𝑓 𝑞𝑞𝑖𝑖 < 𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝑚𝑚𝑤𝑤 𝑝𝑝𝑚𝑚𝑠𝑠𝑖𝑖𝑤𝑤𝑖𝑖𝑚𝑚𝐶𝐶 𝑖𝑖𝐶𝐶 𝑠𝑠𝑚𝑚𝑝𝑝𝑝𝑝𝐴𝐴ℎ 𝑠𝑠𝑝𝑝𝑝𝑝𝐴𝐴𝑚𝑚, 𝑖𝑖𝑓𝑓 𝑞𝑞𝑖𝑖 ≥ 𝑝𝑝𝑖𝑖              (40)  

• Update the optimization value opj𝑚𝑚(𝑞𝑞𝑠𝑠𝑖𝑖), where 
O is the objective function. 

• Increment evaluations E ← E + 1.  
Phase 2: Swine Transformer-Weighted Quantum Monkey 
Evolution 
Swine Transformer-Based Update: 
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• For each solution pj, apply the Swine Transformer 
mechanism to update the RNN weights using the 
following rule: 

pj ← 𝑝𝑝𝑖𝑖 +  𝜆𝜆 �𝑝𝑝𝑔𝑔𝑙𝑙𝑚𝑚𝑏𝑏𝑎𝑎𝑙𝑙 − 𝑝𝑝𝑖𝑖� + 𝑤𝑤𝑞𝑞 ×

𝑚𝑚𝑚𝑚𝐶𝐶𝑚𝑚𝑚𝑚𝑦𝑦 𝑗𝑗𝐴𝐴𝑚𝑚𝑝𝑝 𝑓𝑓𝑝𝑝𝐴𝐴𝑤𝑤𝑚𝑚𝑝𝑝               (41)  
• The monkey jump factor is computed using IWQMO’s 

enhanced monkey optimization process: 
monkey jump = wq  × 𝑞𝑞𝐴𝐴𝑝𝑝𝐶𝐶𝑤𝑤𝐴𝐴𝑚𝑚 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝 �𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 ,𝑝𝑝𝑖𝑖�               (42)  

• If O�pj� improves, update 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 ← 𝑝𝑝𝑖𝑖  𝑝𝑝𝐶𝐶𝑚𝑚 𝑚𝑚𝑝𝑝𝑖𝑖 ← 𝑂𝑂�𝑝𝑝𝑖𝑖�. 
Phase 3: Convergence and Termination 

1. Convergence Check: 
• If the stopping criterion (maximum number of 

evaluations or threshold accuracy) is met, return 
the best solution pbest and its corresponding 
optimization value opbest . 

2. Update Population: 
• Return the updated population P, the 

optimization values OP, and the number of 
evaluations E. 

This structure integrates your Hybrid Swine Transformer-Based 
RNN with the Improved Weighted Quantum Monkey 
Optimization algorithm, capturing the quantum behavior and 
evolution strategy inspired by swine and monkey optimization 
principles. 
 
4. Results and Discussion 
The proposed model was developed and tested using Python 
version 3.7.12. The experiments were conducted on a PC equipped 
with 8 GB of RAM, an Intel Core i7-10700 processor operating at 
4.8 GHz, and a 64-bit Windows 10 operating system. 
Chapter 2 4.1 Dataset Description 
The dataset used for this study comprises real-time data collected 
from 300 patients. To assess the model’s performance, the dataset 
was split into 60% for training and 40% for testing. The data were 
obtained from the NAWA-Nilgiri Adivasi Welfare Association in 
the Nilgiris district. Of the 300 samples, 187 were female and 113 
were male, with ages ranging from 3 to 72 years. Blood samples were 
captured using various imaging modalities, each emphasizing 
distinct features of the red blood cells, such as size, shape, and the 
presence of specific molecules (Lamoureux et al., 2024; Sen et al., 
2021). 
Chapter 3 4.2 Performance Evaluation 
Table 1 presents the training and validation loss, along with the 
training and validation accuracy, for 10 epochs of the Hybrid Swin 
Transformer RNN with IWQMO model. 
Figures 3 and 4 show the training and validation performance 
metrics across the 10 epochs of the model’s training process. These 
Figures display values for training loss, training accuracy, validation 
loss, and validation accuracy at each epoch. Throughout the 

training process, both training and validation accuracy steadily 
improved, achieving 98.56% and 97.80%, respectively, by the final 
epoch. Simultaneously, both the training and validation loss 
decreased, indicating effective learning. These results suggest that 
the model generalizes well, with the validation accuracy closely 
matching the training accuracy by the final epoch (Alzubaidi et al., 
2020; Zhang et al., 2020). 
The confusion matrix for the Hybrid Swin Transformer RNN with 
IWQMO model, as shown in Figure 5, reveals an overall accuracy 
of 98.56%. The model correctly identified 138 true positive cases 
and 157 true negative cases. However, there were 2 false positives 
and 3 false negatives, indicating minor misclassifications. Overall, 
the model demonstrated excellent predictive performance in 
distinguishing between SCA-positive and SCA-negative cases 
(Ganesan & K, 2023; Goswami et al., 2024). 
Table 2 provides a comparative analysis of various models for 
predicting SCA, evaluating them based on key performance 
metrics: accuracy, precision, recall, and F1-score. 
Figure 6 shows that the Hybrid Swin Transformer-RNN-IWQMO 
[Proposed] model achieves the highest accuracy of 98.56%, along 
with notable precision (98.00%), recall (97.00%), and F1-score 
(97.50%), reflecting its robustness and reliability. Following closely, 
the Grad-CAM model (Goswami et al., 2024) achieved an accuracy 
of 96.47% with a precision of 96.00%, while MILISMA (Sen et al., 
2021) recorded an accuracy of 95.72%. The performance of these 
models improved progressively, with ELM (Deo et al., 2024) 
showing the lowest accuracy at 93.91%. This comparative analysis 
emphasizes the superiority of the proposed approach, highlighting 
its potential for improving predictive performance in medical 
applications (Koua et al., 2024; Dada et al., 2022). 
 
5. Conclusion 
The Hybrid Swin Transformer RNN with Improved Weighted 
Quantum Monkey Optimization (IWQMO) algorithm marks a 
significant leap forward in the early detection of Sickle Cell Anemia 
(SCA) among the Nilgiri tribes. By seamlessly integrating the Swin 
Transformer’s advanced feature extraction capabilities with the 
Recurrent Neural Network’s (RNN) ability to identify temporal 
patterns, the model delivers exceptional predictive performance. 
With an impressive accuracy of 98.56%, coupled with high 
Precision (98.00%), Recall (97.00%), and F1-Score (97.50%), it 
outperforms traditional models such as ELM, ACPSSNet, 
SCScreen, MILISMA, and Grad-CAM. This innovative approach 
not only addresses a pressing public health challenge but also offers 
an accurate and efficient tool for the early detection of SCA, 
facilitating timely interventions for vulnerable populations. The 
findings significantly contribute to enhancing healthcare outcomes 
in the Nilgiri tribes and provide a foundation for extending these 
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methods to other populations, ultimately supporting broader public 
health efforts. 
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