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Abstract 
Background: Drugs are defined as chemicals that induce 

physiological effects when ingested, and their 

development involves multiple stages, including 

discovery, design, and development, which are often 

complex and resource-intensive. To address these 

challenges, machine learning (ML) and deep learning (DL) 

techniques have emerged as powerful tools to optimize 

the drug development pipeline. Methods: This study 

utilized two distinct variational autoencoders: a 

convolutional encoder-decoder model and a 

convolutional-GRU-based encoder-decoder model. 

Employing a reparameterization technique, we aimed to 

improve the efficiency of de novo molecular generation. 

Both models were trained and evaluated on the ZINC 

dataset, assessing their capability to generate chemically 

valid and syntactically accurate molecules.Results: The 

convolution-GRU model demonstrated a synthesis 

accuracy of 96.79%, matching the performance of the 

convolutional encoder-decoder model. Additionally, the 

chemical validity of the generated compounds was 

notable, with unique chemical validity scores of 90.71% for 

the convolutional encoder-decoder model and 90.42% for  
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

the convolution-GRU model. Conclusion: The results 

indicate that deep molecular generative models, 

especially the convolution-GRU approach, significantly 

advance de novo molecular design. By achieving high 

levels of accuracy and chemical validity, these models hold 

promise for enhancing drug discovery processes and 

expediting the introduction of new therapeutics to the 

market. 
Keywords: Drug discovery, Deep learning, Variational autoencoders, 

Molecular generation, Chemical validity. 

 
1. Introduction 

Drug discovery is a profoundly intricate, costly, and multifactor-
dependent process. On average, identifying and developing a new 
drug molecule can cost approximately $2.6 billion (Kiriiri, Njogu, 
& Mwangi, 2020). The primary purpose of a drug, often a protein 
(Middaugh & Pearlman, 1999), is to bind to a target protein in the 
body whose modification can alter the course of a disease. Despite 
substantial investments in time and financial resources, the success 
rate in discovering new drugs remains disappointingly low, and the 
overall pipeline is largely unproductive. 

The persistent threat of disease has rendered drug discovery 
essential, pushing researchers toward optimizing this challenging 
process. Recent advancements in data-driven and artificial 
intelligence (AI) approaches, such as machine learning (ML) and 
deep learning (DL), have begun to yield promising results in what 
was once considered a barren field in terms of efficiency and output. 
These AI techniques are now applied at various stages of the drug 
discovery pipeline, including target identification, drug-target  
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interactions, safety biomarker assessment, lead compound 
optimization, de novo molecular structure design, protein function 
prediction, and genome association, as well as in data mining tasks 
like drug efficacy and adverse effect investigation (Dara et al., 2022; 
Vamathevan et al., 2019; Askr et al., 2023; Nag et al., 2022). 
In the last decade, AI-driven approaches have focused primarily on 
predicting drug side effects (Gao et al., 2017), drug-target 
interactions (Gupta et al., 2021; Cheng et al., 2017; Yaseen & 
Kurnaz, 2021), response predictions (Ali & Aittokallio, 2019; Partin 
et al., 2021; Liu et al., 2019), and drug repurposing. Additionally, 
these approaches have been instrumental in assessing properties 
such as solubility, binding, and molecular dynamics modeling. 
However, designing new compounds with specific properties has 
historically received less attention due to the vast chemical space 
and the inherent challenges in exploring it. Recently, latent variable 
models, including generative networks like Recurrent Neural 
Networks (RNN), Variational Autoencoders (VAE), and 
Generative Adversarial Networks (GANs), have enabled the 
generation of novel molecular structures (Prykhodko et al., 2019; 
Méndez-Lucio et al., 2020). 
While creating syntactically and chemically valid molecules 
remains challenging (Bilodeau et al., 2022; Chen et al., 2020), deep 
generative models that integrate spatial and sequential 
information—through convolutional and recurrent neural network 
layers in the encoder-decoder architecture—offer potential 
solutions. Including structural information in models is essential, 
as a drug’s structure influences its pharmacokinetics, 
pharmacodynamics, and safety profile (Paul et al., 2021). This 
relationship between molecular structure and activity, termed 
Quantitative Structure-Activity Relationship (QSAR), is central to 
predicting a molecule’s functionality. Consequently, employing a 
convolutional-based variational autoencoder is advisable for 
incorporating structural data, given its capability in capturing 
complex molecular features (Ekins, 2016; Gómez-Bombarelli et al., 
2016). 
The following sections detail the literature review and existing 
limitations in Section 2, molecular representation techniques and 
variational encoder-based model architectures in Section 3, 
evaluation criteria in Section 4, experimental findings in Section 5, 
and finally, conclusions and future research directions in Section 6. 
 
2. Literature Review 
Pharmaceutical companies have made significant strides in 
leveraging machine learning (ML) and deep learning (DL) 
techniques to enhance drug discovery processes (Teli & Masoodi, 
2021; Zhu, 2020). Across various drug development tasks, DL 
algorithms have delivered cutting-edge performance, particularly in 
the complex challenge of designing de novo drug  
 

molecules (Blaschke et al., 2018). Recently, researchers have focused 
on creating molecules with desired properties such as solubility and 
minimal toxicity, aiming to design drug molecules that can alter 
specific pathways and bind effectively to target proteins. Encoder-
decoder-based models, including autoencoders and generative 
adversarial networks (GANs), have proven valuable in this process, 
as they facilitate the generation of new molecular samples by 
adjusting their latent representations (Gómez-Bombarelli et al., 
2016). These advancements underscore the ability of DL models to 
capture multidimensional molecular representations, which are 
vital for novel drug development. 
In recent studies, Gupta et al. (2018) employed a Long-Short Term 
Memory (LSTM) model to generate new drug-like compounds. 
Their generative recurrent neural network (RNN) included two 
LSTM layers with 256 hidden units and dropout regularization, 
followed by a dense layer with softmax activation. The model was 
trained on SMILES strings from the ChEMBL22 dataset, achieving 
58% validity in generating token-wise compounds after 22 training 
epochs. By refining this approach to allow molecule fragment 
expansion, they improved accuracy, resulting in molecules with 
higher validity. However, limitations included relatively low 
validity rates in some molecules, highlighting the need for more 
robust methods. 
Blaschke et al. (2018) proposed an alternative approach by mapping 
molecular structures to a continuous latent space using 
autoencoders. Their results showed that preserving molecular 
similarity in the latent space facilitated the generation of new 
molecules with enhanced properties. Specifically, they 
demonstrated that a variational autoencoder (VAE) with an 
additional discriminator aligned the encoder output with a user-
defined target distribution, achieving 77.4% valid molecules with a 
Gaussian distribution and 78.3% validity with a uniform 
distribution on the ChEMBL version 22.34 dataset. 
Further development in this area included Kadurin et al. (2017) and 
Joo et al. (2020), who introduced an architecture utilizing 
conditional variational autoencoders (CVAE) for designing novel 
drug candidates with specific attributes. By conditioning the 
encoder and decoder to target properties, the CVAE model was able 
to generate anti-cancer compounds, as demonstrated on the NCI-
60 dataset. This approach allowed the generation of molecules with 
high Tanimoto similarity coefficients, indicating strong structural 
similarity to known compounds, and paved the way for more 
tailored molecular searches in public datasets. 
Despite these advancements, current models, including 
autoencoders and VAEs, face challenges in generating chemically 
and syntactically valid molecules consistently. Researchers have 
also explored adversarial autoencoders (AAEs) to improve novelty 
and applicability in drug design. For instance, Kadurin et al. (2017) 
used an AAE with a seven-layer architecture to develop anti-cancer 
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molecules, demonstrating significant potential when evaluated with 
NCI-60 cell line data. 
In addition to the molecular generation models, blockchain 
technology has shown promise in ensuring data security and 
enhancing trust in healthcare applications (Teli & Masoodi, 2021; 
Ahmed Teli, Tawseef, et al., 2022). However, to address the current 
limitations in molecular generation, the development of DL 
architectures with higher structural and syntactical validity is 
essential. This study focuses on enhancing these aspects by 
leveraging convolutional neural networks (CNNs) and Gated 
Recurrent Units (GRU) models, which have shown promise in 
capturing intricate molecular patterns. 
 
3. Methodology 
3.1 Molecular Representation 
Molecules are typically represented by their chemical structures, 
which include atoms and the bonds connecting them. However, for 
computational processing, an effective molecular representation 
must possess two key characteristics: uniqueness and invertibility. 
Uniqueness ensures that each molecular structure corresponds to a 
single, distinct representation, while invertibility guarantees a one-
to-one relationship between a molecular structure and its 
representation (David et al., 2020). 
Over the years, numerous molecular representation methods have 
been proposed. Among these, the Simplified Molecular Input Line 
Entry System (SMILES) is one of the most prevalent for high-speed 
machine processing due to its simplicity and efficiency (Weininger, 
1988). To construct a SMILES representation of a chemical 
structure, each atom in the molecule is assigned a unique number, 
and a graph traversal algorithm generates a sequence of ASCII 
characters based on this numbering (David et al., 2020). 
Additionally, SMILES strings can be easily converted into various 
formats, such as one-hot encoding, word embeddings, and 
molecular fingerprints, which are directly compatible with 
downstream computational models. 
In this study, we utilize one-hot encoding of SMILES strings at the 
character level to canonicalize them for unique molecular 
representation. Specifically, each character in a SMILES string is 
converted into a one-hot encoded vector whose length equals the 
number of unique characters in the entire dataset. Each SMILES 
string is then transformed into a fixed-length tensor with 
dimensions 

 [1 × 𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ×
𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)],  
 
 Shorter strings are padded with the letter ‘E’ to maintain uniform 
tensor dimensions. This approach is consistent with the 
methodology employed by Lim et al. (2018). 
Variational Autoencoder Architecture 

The majority of techniques for de novo drug design leverage an 
encoder-decoder structure, typically variants of the Variational 
Autoencoder (VAE) architecture. In this work, we employ two 
variants of the VAE: one solely based on Convolutional Neural 
Networks (CNNs) and the other combining CNNs with Gated 
Recurrent Units (GRUs). Unlike traditional VAE models that 
predominantly use fully connected dense layers or RNN layers for 
the encoder and decoder, our models incorporate convolutional 
and GRU layers to better capture structural and sequential 
information inherent in molecular data. 
3.2 Variational Autoencoder (VAE) 
The basic workflow of a VAE mirrors that of a classical autoencoder 
but with a probabilistic twist. The encoder maps the input data into 
a low-dimensional latent space representation, often referred to as 
the latent code. The decoder then reconstructs the original input 
from this latent code. Unlike classical autoencoders, both the 
encoder and decoder in a VAE are probabilistic. Specifically, the 
encoder generates a probability distribution for each latent 
dimension rather than a single deterministic value. The decoder 
samples from this latent space distribution, using the encoder’s 
output parameters, to generate a plausible reconstruction of the 
input data. 
Mathematically, the objective function of a VAE is defined as: 

  𝔼𝔼[log𝑃𝑃(𝑋𝑋|𝑧𝑧)] −
DKL[𝑄𝑄(𝑧𝑧|𝑋𝑋)||𝑃𝑃(𝑧𝑧)]                                                                (1)  
 Equation 1 VAE Objective Fun 
 
where     𝔼𝔼:  expectation value;          𝑃𝑃,𝑄𝑄:  probability distributions 

𝑋𝑋:  data;          𝑧𝑧:  latent space;      𝐷𝐷𝐾𝐾𝐾𝐾:Kullback-Leiber divergence. 
The first term in the objective function aims to minimize the 
reconstruction loss, ensuring that the decoder accurately 
reconstructs the input data from the latent representation. The 
second term minimizes the Kullback-Leibler divergence between 
the encoder’s distribution Q(z∣X)Q(z|X)Q(z∣X) and a prior 
distribution P(z)P(z)P(z), typically a multivariate normal 
distribution (Kingma & Welling, 2019). 
3.3 Sampling with the Reparameterization Trick 
A critical aspect of the VAE is the sampling process. Unlike classical 
autoencoders, the VAE encoder outputs both the mean (μ\muμ) 
and standard deviation (σ\sigmaσ) for each latent dimension, 
enabling the generation of a range of values for each latent variable. 
The latent vector zzz is then sampled using these parameters: 

                                        𝑧𝑧 = 𝜇𝜇 + 𝜎𝜎 ∗ 𝜖𝜖,                   𝜖𝜖 ∼   𝒩𝒩(0, 𝐼𝐼)                                      
Equation 2: Reparameterization Trick 
 
This reparameterization technique allows for backpropagation 
through the stochastic sampling process by expressing zzz as a 
deterministic function of μ\muμ, σ\sigmaσ, and a random variable 
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ϵ\epsilonϵ sampled from a standard normal distribution (Kingma 
& Welling, 2019). 
3.4 Model Architectures 
We propose two distinct VAE-based architectures for molecular 
generation: 

1. Convolutional Encoder-Decoder Architecture 
2. Convolution-GRU Encoder-Decoder Architecture 

3.4.1 Convolutional Encoder-Decoder Architecture 
As illustrated in Figure 3, this model employs three convolutional 
layers within the encoder, each followed by a Rectified Linear Unit 
(ReLU) activation function. The output from the convolutional 
layers is flattened and passed through two separate linear layers to 
compute the latent distribution parameters (μ\muμ and 
log⁡σ2\log \sigma^2logσ2). The latent dimension size is set to 196, 
a hyperparameter determined through empirical validation. 
The decoder reconstructs the one-hot encoded molecular 
representations by passing the latent code through a series of 
transposed convolutional layers, each accompanied by ReLU 
activations. The final layer outputs the reconstructed molecule 
using a sigmoid activation function (Hancock & Khoshgoftaar, 
2020; Dahouda & Joe, 2021). 
3.4.2 Convolution-GRU Encoder-Decoder Architecture 
Depicted in Figure 4, the second architecture shares the same 
convolutional encoder as the first model. However, the decoder 
integrates Multilayer GRUs instead of transposed convolutional 
layers. After obtaining the latent code through the 
reparameterization trick (Equation 2), the GRU layers process this 
code to reconstruct the molecular representations. A final linear 
layer with sigmoid activation ensures the output maintains the one-
hot encoded format (Hancock & Khoshgoftaar, 2020; Dahouda & 
Joe, 2021). 
Both architectures utilize the same encoder setup, consisting of 
three convolutional layers with ReLU activations, followed by 
flattening and linear layers to derive the latent space parameters. 
The primary distinction lies in the decoder design: the first model 
leverages transposed convolutions, while the second employs GRUs 
to handle sequential dependencies in molecular data. 
3.5 Training Procedure 
The models were trained on the ChEMBL22.34 dataset, which 
comprises a diverse set of molecular structures represented as 
SMILES strings. Each SMILES string was one-hot encoded and 
padded to match the length of the longest string in the dataset. The 
training process involved optimizing the VAE objective function 
(Equation 1) using the Adam optimizer with a learning rate of 
1×10−31 \times 10^{-3}1×10−3. 
During training, the models learned to encode the one-hot encoded 
SMILES strings into a continuous latent space and subsequently 
decode them back to their original form. The use of convolutional 
and GRU layers in the encoder and decoder was instrumental in 

capturing both the structural and sequential nuances of the 
molecular data, thereby enhancing the validity and novelty of the 
generated molecules. 
3.6 Evaluation Metrics 
To comprehensively evaluate the performance of the proposed 
molecular generative models, several key metrics were utilized. 
Validity refers to the percentage of generated SMILES strings that 
are chemically valid, indicating the model’s accuracy in producing 
molecules that adhere to chemical principles. Uniqueness measures 
the proportion of distinct molecules among all generated samples, 
highlighting the model’s ability to generate diverse structures. 
Novelty assesses the extent to which the generated molecules differ 
from those in the training dataset, demonstrating the model's 
capability to create new, unseen molecular structures. Additionally, 
Tanimoto Similarity is used as a quantitative measure of structural 
similarity between generated molecules and known compounds, 
which helps determine how closely the new molecules resemble 
existing ones. Together, these metrics provide a robust framework 
to evaluate the models’ ability to generate meaningful, unique, and 
chemically diverse molecular structures. 
4. Evaluation criteria 
To design novel and valuable compounds, several essential 
properties must be present in the generated molecules. First, the 
molecules must be both chemically and syntactically valid, as 
validated by methods such as SMILES representation or SDF format 
analysis researchers often begin by modifying an existing drug to 
develop new molecules that improve upon the original compound 
while retaining structural resemblance. One common metric for 
measuring structural similarity between generated compounds and 
existing drug molecules is the Tanimoto similarity. This metric is 
widely recognized in drug development for its efficiency in 
comparing molecular fingerprints. For molecules AAA and BBB, 
Tanimoto similarity can be defined over their fingerprint bit vectors 
as:                            
 
  Tanimoto similarity=  𝐴𝐴.𝐵𝐵 

||𝐴𝐴||2+ ||𝐵𝐵||2−𝐴𝐴.𝐵𝐵 
   (3)  

 
where A⋅BA represents the dot product of the fingerprint bit vectors 
of molecules A and B, and ∥A∥2 ∥B∥2are the squared magnitudes of 
these vectors. 
For evaluating the generated molecules, we use the following 
metrics, given a set GGG of chemically valid molecules, a training 
set D, n as the count of syntactically valid generated molecules,  as 
the total number of samples: 
4.1 Syntactic Validity Ratio (SVR): Measures the ratio of 
syntactically valid molecules to total generated samples, calculated 
as: 
Syntactic Validity Ratio: 𝑛𝑛

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
    

 (4)  
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4.2 Chemical Validity Ratio (CVR): Assesses the proportion of 
generated molecules that are chemically viable, or realistic 
according to chemical laws: 
Chemical Validity Ratio: |G|

𝑛𝑛
    

 (5) 
4.3 Uniqueness: Evaluates the distinctiveness of generated 
molecules by determining the proportion of unique molecules 
within the generated set: 
Uniqueness: |set(G)|

𝑛𝑛
     

 (6) 
4.4 Novelty: Measures the proportion of generated molecules that 
are novel and do not overlap with the training set DDD: 
Novelty: 1 − |G∩D|

|G|
        

 (7) 
4.5 Similarity Ratio: Averages the pairwise Tanimoto similarity 
between molecules in GGG, providing a measure of how 
structurally similar generated compounds are: 
Similarity  
∑  |𝐺𝐺|
𝑖𝑖=0 ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝐺𝐺𝑖𝑖,𝐺𝐺𝑗𝑗�

|𝐺𝐺|
𝑗𝑗=𝑖𝑖+1

|𝐺𝐺|(|𝐺𝐺|−1)
2

   

 (8) 
These metrics are pivotal in drug discovery, as they help guide 
model development, assess the diversity and quality of generated 
molecules, and aid in selecting potential drug candidates. Metrics 
like the Syntactic Validity Ratio ensure that generated molecules 
follow syntactical norms, while the Chemical Validity Ratio checks 
their adherence to chemical laws. Uniqueness and Novelty are 
essential for expanding chemical diversity, and Similarity Ratio 
allows for comparing generated structures to known compounds, 
providing insight into the balance between novelty and desired 
structural characteristics. 
 
5. Results 
This experiment uses two deep generative models to synthesize new 
molecular structures. Specifically, two different types of variational 
autoencoders (VAEs) were employed, each illustrated in Figures 3 
and 4. 
5.1 Dataset and Hyperparameters 
The ZINC dataset, a publicly accessible resource, was chosen for 
this experiment due to its extensive collection of over 100 million 
small compounds. This dataset is valuable in drug discovery as it 
offers a broad range of chemical structures, properties, and 
biological activities, providing a foundation for exploring 
numerous therapeutic possibilities. For this experiment, a subset of 
the ZINC dataset containing 250,000 SMILES strings was used, with 
lengths ranging from 9 to 109 characters. Since only a small fraction 
exceeded 60 characters, only those with lengths of 60 or fewer 
characters were selected, resulting in a filtered dataset of 235,724 

samples. A 70:30 split was applied, yielding 165,006 samples for 
training and 70,718 for testing. 
Training was conducted over 35 epochs, with key hyperparameters 
including a hidden channel size of 32, a latent space dimension of 
196, and a convolutional layer kernel size of 3. Both models were 
optimized using the Adam optimizer on VAE loss, with the learning 
rate set at 0.001. 
5.2 Molecule Synthesis Process 
Following model training, the generative models were evaluated 
and deployed to synthesize novel molecules. The synthesis process 
began with a seed molecule, commonly aspirin, as shown in Figure 
6. Molecule generation involves calculating the latent space point of 
the starting molecule and using the following sampling formula: 

𝑠𝑠 = 𝜎𝜎 ∗ 𝜖𝜖 + 𝜇𝜇     
 (9) 
Where: 𝜇𝜇 is the mean obtained from the latent representation of a 
given starting point. 𝜎𝜎 is the standard deviation for sampling. In 
this work, different values of the standard deviation were manually 
set to observe the different scores depending on how far you are 
from the starting point (mean). 𝜖𝜖 belongs to normal distribution. A 
total of 5000 samples were tested, for different values of the 
standard deviation. For both types of models, taking the pre-trained 
models with the best score, 5000 samples were generated starting 
from the SMILE string representation of the aspirin molecule.  
5.3 Convolution-Based Model 
Using the convolutional encoder-decoder model, molecules were 
generated from the aspirin seed molecule with a standard deviation 
of 0.065. The resulting synthesized molecules are displayed in 
Figure 7, while Figure 8 shows the synthesis ratios. This setup 
successfully generated a significant number of chemically valid 
molecules. 
When the standard deviation was adjusted to 0.085, the generated 
molecules exhibited increased uniqueness, as shown in Figures 9 
and 10. However, chemical validity slightly decreased compared to 
the configuration with a 0.065 standard deviation. 
5.4 Chemical Viability 
Chemically viable molecules must conform to the laws of chemistry, 
though not all syntactically valid molecules are chemically feasible. 
Syntactic validity depends on the representation language (e.g., 
SMILES, SDF) used, and differences may arise depending on how 
various SMILES parsers interpret the generated SMILES strings. 
Ensuring consistency with reliable SMILES parsers is 
recommended for future work. 
5.5 Convolution-GRU Based Model 
In this setup, molecules were generated using a Convolution-GRU-
based model with the aspirin molecule as the seed and a standard 
deviation of 0.065. The generated molecules are shown in Figure 11, 
and Figure 12 presents the results, indicating that this model 
produced fewer valid and unique molecules. 
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Figure 1a. A visual representation of the various phases of drug discovery where artificial intelligence (AI) plays a crucial role, 
highlighting its impact on target identification, lead optimization, and preclinical testing. 
 

 
Figure. 1b.  Detailed illustration of AI integration across different stages of drug discovery, emphasizing the potential for 
efficiency and innovation in drug development processes. 
 

 
Figure 2. Variational Autoencoder (VAE) Architecture Illustration of the architecture of a variational autoencoder, 
showcasing the encoder and decoder components, and the latent space representation used for molecular generation. 
 

 
Figure 3. Convolutional Layer-Based Encoder and Decoder Architectures Schematic representation of the encoder and 
decoder architectures utilizing convolutional layers, demonstrating how these structures contribute to de novo molecular 
design. 
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Figure 4. Convolution-Based Encoder and GRU-Based Decoder Model Comparison of the convolutional encoder and GRU-
based decoder model architecture, detailing their respective roles in enhancing molecular generation. 
 
 

 
Figure 5.  Reparameterization Technique Schematic Illustration of the reparameterization technique used to derive latent 
space vectors from encoder outputs, facilitating improved sampling for molecular generation. 
 

 
Figure 6. Display of a sample SMILES string alongside its corresponding chemical structure, demonstrating the conversion 
from text representation to molecular visualization. 

 
 
Figure 7. Molecules generated by the convolution-based model with σ=0.06 
 

 
Figure 9. Illustration of additional molecules synthesized by the convolution-based model, highlighting variations at a standard 
deviation of σ=0.085. 
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Figure 8. Performance of Convolutional-based encoder-decoder model with σ=0.065 
 

 
Figure 10. Performance metrics for the convolution-based encoder-decoder model at a standard deviation of σ=0.085, 
emphasizing improvements in molecular generation. 
 
 

 
Figure 11. Molecules generated by convolution-GRU-based model with σ=0.065 
 

 
Figure 13. Showcase of molecules synthesized by the convolution-GRU-based model at a standard deviation of σ=0.08, 
illustrating its generative capabilities. 
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Figure 12. Evaluation of the convolution-GRU-based encoder-decoder model performance at σ=0.065, detailing the accuracy 
and chemical validity of generated molecules. 
 

 
Figure 14.  Performance analysis of the convolution-GRU-based encoder-decoder model at a standard deviation of σ=0.085, 
demonstrating enhancements in molecular synthesis. 

 
Figure 15. A graphical comparison illustrating the ratios of performance metrics between the convolution-based and 
convolution-GRU-based models, emphasizing the strengths and weaknesses of each approach. 
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When the standard deviation was increased to 0.085, the model 
generated a higher number of valid and unique molecules, but with 
reduced syntactic validity, as shown in Figures 13 and 14. 
5.6 Observations on Model Performance 
Testing the performance of the two models under different 
standard deviations (0.065 and 0.085) revealed that increasing the 
standard deviation led to more unique molecules. However, other 
indicators, such as chemical validity and Tanimoto similarity, 
tended to decrease. Figure 15 presents a comparative graph 
illustrating these performance trends. 
 
6. Discussion 
The recent advancements in molecular generation utilizing 
convolution-based models have demonstrated a significant ability 
to produce syntactically and chemically valid molecules derived 
from the aspirin structure. This research indicates that both 
convolution-based and convolution-GRU (Gated Recurrent Unit)-
based models are highly effective in generating unique, chemically 
valid molecules. While their performance is largely comparable, the 
convolution-GRU model exhibits superior results in terms of 
Tanimoto similarity ratio, which assesses structural similarity 
between generated compounds and known drugs, making it 
particularly advantageous in the context of drug discovery. 
The achieved test accuracy for the convolution-based encoder and 
decoder reached an impressive 96.79%, while the convolution + 
GRU model recorded a slightly lower accuracy of 93.63%. This high 
level of accuracy signifies the effectiveness of these models in 
generating relevant molecular structures, although the marginal 
difference in performance suggests that while the integration of 
GRU improves structural similarity, it does not drastically alter the 
overall accuracy of generation. 
Despite these promising results, the utilization of Variational 
Autoencoders (VAEs) for molecule generation poses several 
inherent challenges that warrant further exploration and 
refinement. One of the primary issues is the chemical validity and 
likelihood of generated compounds. VAEs can produce molecules 
that are chemically improbable or invalid, which undermines their 
applicability in drug discovery. It is crucial for generated 
compounds to adhere to established chemical principles and 
possess a high likelihood of existing within the real chemical space 
(Jha et al., 2020; Gomez-Bombarelli et al., 2018). This necessitates 
further research into enhancing the validity of compounds 
generated by VAEs, ensuring they meet the requisite chemical 
standards. 
In addition to chemical validity, the specificity and diversity of 
generated molecules pose significant challenges. VAEs may struggle 
to produce molecules with specific desirable properties, such as 
selectivity or target binding affinity. This highlights a continuous 
need to enhance VAEs' capacity to capture and generate a variety of 

molecular structures that exhibit specific attributes (Chen et al., 
2018; Segler et al., 2018). The lack of specificity can impede the 
efficiency of drug discovery processes, where tailored compounds 
are often required for successful therapeutic interventions. 
Another critical aspect is the management of molecular 
conformations. Accurately capturing a molecule's bioactivity 
necessitates representing and generating it in multiple 
conformations. Enhancing VAE architectures to accommodate 
various molecular conformations could significantly improve the 
functionality of generated molecules (Li et al., 2018). A better 
representation of molecular flexibility is essential for predicting 
how compounds interact with biological targets, thereby enhancing 
the drug discovery process. 
Moreover, the generation of rare chemical entities presents a 
challenge for VAEs. Often, compounds that resemble existing drugs 
constitute a small subset of the overall chemical space, making it 
difficult for VAEs to generate unique or rare molecules. To 
overcome this limitation, future research should focus on 
promoting the synthesis of molecules in less populated regions of 
chemical space (Zhang et al., 2019). This could involve developing 
strategies to guide the generative process toward these 
underrepresented areas. 
Multi-objective optimization is another pressing challenge in the 
context of drug development. The process involves balancing 
competing goals such as safety, pharmacokinetics, and efficacy. 
Developing VAE architectures capable of managing these multi-
objective optimization tasks is complex and necessitates innovative 
approaches (Huang et al., 2020). Achieving a balance among these 
attributes is critical for generating molecules that are not only 
effective but also safe for clinical use. 
The interpretability of latent representations generated by VAEs is 
also vital for medicinal chemists. Understanding the latent space of 
produced compounds allows researchers to connect specific 
molecular features with desired chemical properties. Future 
research efforts should focus on improving the interpretability of 
the latent space, thereby enabling better insights into the underlying 
mechanisms driving molecular generation (Kearnes et al., 2016). 
This could facilitate the identification of promising drug candidates 
by linking structural attributes to biological activity. 
Additionally, the concept of transfer learning across targets holds 
significant promise for enhancing drug discovery efforts. By 
developing VAE models that can leverage information from 
previously studied drug targets to generate compounds for new 
targets, the drug development process can be accelerated. This 
approach requires the formulation of effective transfer learning 
strategies within the VAE framework (Ramsundar et al., 2017). 
Addressing the limitations associated with the availability of 
extensive datasets in drug discovery is also crucial. Enhancing the 
data efficiency of VAEs in learning from limited datasets and 
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producing significant compounds is essential, particularly in 
scenarios where access to large, labeled datasets is restricted 
(Vinyals et al., 2016; DeWolf et al., 2020). Developing 
methodologies that optimize the learning process from smaller 
datasets can expand the applicability of VAEs in diverse drug 
discovery contexts. 
Incorporating safety and toxicity predictions into the VAE 
architecture represents a further avenue for improving drug 
discovery applications. By integrating prediction modules that 
assess the safety and toxicity of generated compounds, VAEs can be 
made more effective in identifying viable drug candidates (Liu et al., 
2018; Xu et al., 2017). This integration ensures that the generated 
compounds not only demonstrate chemical validity but also possess 
a favorable safety profile. 
To address the challenges inherent in de novo drug generation, 
several strategies may be implemented in future research. Hybrid 
models that combine VAEs with other machine learning 
approaches, such as graph neural networks and reinforcement 
learning, can capture complex molecular interactions and enhance 
generation quality (Yang et al., 2017). Additionally, employing 
hierarchical structures that represent molecules at various levels of 
abstraction may provide improved control over generated 
molecular structures. Implementing conditional VAEs that utilize 
scaffolds and target attributes as conditioning elements could guide 
the generation process more effectively. 
Furthermore, incorporating explicit chemical rules into the VAE 
architecture can enhance the validity of generated compounds. 
Utilizing knowledge graphs to direct the generative process and 
represent chemical information can also contribute to improved 
outcomes. Additionally, integrating human expertise through 
expert systems into VAE frameworks may further enrich the 
generative capabilities of these models. 
Establishing criteria for assessing the chemical viability of produced 
compounds is crucial for advancing drug discovery. This includes 
developing drug-likeness metrics, predicting target binding affinity, 
and evaluating potential toxicity and safety of generated 
compounds. Resolving these challenges requires continuous 
innovation in model architectures, the integration of domain 
knowledge, and the establishment of specialized assessment metrics 
to ensure the chemical validity and suitability of generated 
molecules for drug discovery applications. 
 
7. Conclusion  
In conclusion, the exploration of molecular generation using 
convolution-based models, particularly those utilizing GRU, 
demonstrates significant potential in producing chemically valid 
and syntactically accurate compounds. While both models achieved 
commendable test accuracies, challenges remain in ensuring the 
generated molecules adhere to chemical principles, possess desired 

characteristics, and can be effectively represented in various 
conformations. Future advancements should focus on refining 
VAE architectures, enhancing data efficiency, and integrating safety 
predictions to improve drug discovery outcomes. The proposed 
hybrid models, conditional VAEs, and explicit chemical rules are 
promising avenues for addressing these challenges. Ultimately, the 
successful application of these models hinges on overcoming 
existing limitations, which will facilitate the identification of 
effective drug candidates and enhance the overall drug 
development process. Continuous innovation and integration of 
domain knowledge will be critical in advancing the field of 
molecular generation for therapeutic applications. 
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