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Abstract 
Background: The pharmaceutical sector is a critical 

component of healthcare, driving innovation in drug 

discovery, development, and delivery. With the increasing 

integration of artificial intelligence (AI), digital health 

technologies, and biotechnology, the industry is 

transforming rapidly. This review examines the key areas 

of the pharmaceutical industry and highlights the growing 

impact of AI in enhancing various processes, from drug 

discovery to clinical trials. To explore the applications of 

AI in drug discovery, development, manufacturing, clinical 

trials, personalized medicine, and regulatory compliance. 

This review also addresses the challenges, such as data 

privacy and interoperability, that accompany the adoption 

of AI in the pharmaceutical sector. Methods: A 

comprehensive review of existing literature and case 

studies on the application of AI in pharmaceutical 

research and operations was conducted. Key areas of 

focus include AI's role in predictive analytics, target 

identification, manufacturing, supply chain management, 

clinical trial optimization, and pharmacovigilance. 

Results: AI significantly enhances drug discovery by 

improving target identification, predictive modeling, and 

high-throughput screening. It optimizes manufacturing  
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

through real-time quality control and process automation. 

In clinical trials, AI facilitates patient recruitment and 

adaptive trial designs, while in personalized medicine, it 

enables biomarker discovery and treatment optimization. 

AI also supports regulatory compliance through 

automated monitoring and risk assessment. Conclusion: 

AI is transforming the pharmaceutical sector, making 

processes more efficient, precise, and tailored to 

individual patients. However, challenges such as data 

privacy, ethical considerations, and interoperability must 

be addressed to fully harness AI's potential. 

Standardization and collaboration will be essential in 

driving the next phase of innovation in pharmaceutical 

development and healthcare delivery. 
Keywords: Artificial Intelligence, Drug Discovery, Biopharmaceuticals, 

Clinical Trials, Regulatory Compliance 

 
Introduction 

The pharmaceutical sector plays a crucial role in healthcare by 
driving advancements in medical science and improving global 
well-being. It encompasses several key areas, including research and 
development (R&D), where companies invest heavily in 
discovering new drugs. Manufacturing follows strict quality 
standards to ensure safe commercial production. Regulatory affairs 
manage compliance with the regulations needed for product 
approvals, while marketing and sales target healthcare professionals 
and consumers. Additionally, distribution and supply chain 
management ensure efficient access to medications. Clinical trials 
are also conducted to evaluate the safety and efficacy of drugs, and 
the  growing  role  of  biotechnology  has  expanded  the  sector  to  
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include biopharmaceuticals, such as vaccines and gene therapies. 
Furthermore, the production of generics and biosimila represents 
an essential aspect of this industry (Pharmaceutical Research and 
Manufacturers of America [PhRMA], 2022; DiMasi, Grabowski, & 
Hansen, 2016; U.S. Food and Drug Administration [FDA], 2022; 
International Council for Harmonisation of Technical 
Requirements for Pharmaceuticals for Human Use [ICH], 2022; 
Khan, Shah, Ahmad, & Akram, 2017; World Health Organization 
[WHO], 2019; ICH, 1996; Mak, Saunders, & Jett, 2016; FDA, 2020). 
The pharmaceutical sector is undergoing a significant paradigm 
shift driven by technological innovations, scientific breakthroughs, 
and an increasing emphasis on patient-centric approaches. Key 
advances include precision medicine, which tailors medical 
treatment to the unique genetic makeup of each patient, made 
possible by advances in genomics, proteomics, and data analytics 
(Collins & Varmus, 2015). Digital health technologies, including 
wearables, telemedicine, and health apps, are reshaping healthcare 
delivery by enhancing patient monitoring and enabling real-time 
data-driven decision-making (Hamburg & Collins, 2010; Topol, 
2019; Steinhubl, Muse, & Topol, 2015). Artificial intelligence (AI) 
is revolutionizing drug discovery, with AI-driven technologies like 
machine learning and deep learning streamlining drug design and 
clinical trials (Angermueller, Pärnamaa, Parts, & Stegle, 2016; 
Ching et al., 2018). Regulatory agencies are also adopting innovative 
approaches, such as adaptive trial designs and the use of real-world 
evidence, to accelerate drug approval processes (Kaitin & DiMasi, 
2011; Mullard, 2021). 
Advancements in biopharmaceuticals and gene therapies are 
providing highly targeted treatment options for various diseases, 
further expanding the possibilities for personalized medicine 
(Baum & Akbari, 2020; High & Roncarolo, 2019). Collaborative 
research models are increasingly embraced, with partnerships 
between industry, academia, and startups facilitating faster drug 
discovery through knowledge sharing (Munos, 2009; Chesbrough, 
2003). Additionally, patient engagement and real-world evidence 
are becoming more prominent in informing clinical decisions and 
improving healthcare outcomes (Berger et al., 2017; Khozin, 
Blumenthal, & Pazdur, 2020). Finally, the industry is adopting 
green chemistry principles and sustainable manufacturing practices 
to reduce its environmental footprint (Anastas & Warner, 1998; 
Sheldon, 2014). 
 
Application of Artificial Intelligence in Pharmaceutical Sectors 
Artificial Intelligence (AI) has emerged as a transformative 
technology with applications across diverse industries, including 
the pharmaceutical sector. This field is undergoing a significant 
shift due to AI’s potential to revolutionize drug  
 

discovery, development, manufacturing, clinical trials, and 
healthcare delivery. This review highlights the numerous ways in 
which AI is enhancing various processes within the pharmaceutical 
industry. 
 
Application of AI in Drug Discovery and Development 
Predictive Analytics and Target Identification AI algorithms, 
particularly machine learning models, have transformed drug 
discovery by improving predictive analytics and target 
identification. These algorithms analyze vast datasets, expediting 
early stages of drug development by identifying patterns and 
predicting potential drug candidates (Xu et al., 2019). AI models, 
such as machine learning and deep learning, leverage data from 
genomics, proteomics, chemical structures, and clinical trials to 
identify drug candidates, assess safety, and estimate effectiveness 
based on historical data. By predicting compound interactions, 
toxicity, and pharmacokinetics, AI enables researchers to prioritize 
drug candidates for further development (Aliper et al., 2016). 
Additionally, AI streamlines target identification by analyzing 
biological data and comprehending disease mechanisms. Natural 
language processing (NLP) extracts valuable insights from scientific 
literature, aiding in target identification. AI-driven methods, such 
as network analysis and knowledge graph construction, integrate 
diverse data sources to reveal promising therapeutic targets (Ching 
et al., 2018; Li et al., 2018). AI also excels in integrating multi-omics 
data, providing a comprehensive understanding of disease 
pathways and enhancing the accuracy of target identification 
(Wang et al., 2020; Xiong et al., 2018). Moreover, deep learning 
models, like neural networks, prioritize drug targets by assessing 
intricate relationships between molecular features and disease 
pathways, facilitating therapeutic intervention (Zhang et al., 2019; 
Gawehn et al., 2016). 
Drug Design and Formulation 
AI plays a crucial role in drug design and formulation by increasing 
efficiency in the development of new drugs. AI accelerates drug 
design through predictive modeling of molecular interactions, 
optimizing chemical structures, and identifying potential drug 
candidates. Machine learning models analyze vast chemical and 
biological datasets to forecast the pharmacological properties of 
compounds. Additionally, generative models aid in de novo design, 
creating molecules with desired attributes (Stokes et al., 2020; Segler 
et al., 2018). 
In compound optimization, AI algorithms predict bioactivity, 
toxicity, and pharmacokinetic properties, allowing medicinal 
chemists to prioritize and modify compounds more effectively. This 
results in the development of safer and more effective drugs (Xu et 
al., 2019). AI also assists in creating pharmacophore models, which 
identify essential structural and chemical features for drug-target 
interactions, facilitating the design of molecules that align with 
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biological targets (Chen et al., 2018; Ekins & Clark, 2018; Schneider 
et al., 2017). Furthermore, AI optimizes the composition and 
characteristics of drug formulations by predicting factors such as 
stability, solubility, and bioavailability, ultimately improving drug 
delivery outcomes (Seo et al., 2019; Manogaran & Lopez, 2017). AI 
also supports personalized medicine by integrating individual 
patient data, genetics, and lifestyle factors, tailoring drug 
formulations to enhance efficacy and minimize adverse effects 
(Dehghan & Casas, 2019; Gawehn et al., 2016). 
High-Throughput Screening and Virtual Trials 
High-throughput screening (HTS) is a vital process in drug 
discovery, involving the rapid testing of large compound libraries 
to identify potential drug candidates. AI enhances HTS by 
improving the efficiency, accuracy, and predictive power of this 
process. AI algorithms analyze chemical structures, biological 
activities, and other datasets to prioritize compounds for screening. 
Machine learning models predict which compounds are likely to be 
active against specific targets, streamlining compound selection 
(Unterthiner et al., 2014; Lenselink et al., 2017). 
AI also predicts the biological activity of compounds, helping 
identify potential hits with a higher success rate and minimizing 
false positives, thus improving the efficiency of HTS campaigns 
(Xiong et al., 2018; Wu et al., 2018). In addition, AI optimizes 
screening assays by selecting appropriate conditions and readouts, 
resulting in more robust and informative experiments (Scott & 
Ochoa, 2016; Dai & Devarajan, 2017). AI also aids in hit triage and 
lead optimization by analyzing structure-activity relationships and 
predicting pharmacokinetic properties, ensuring the selection of 
compounds with desirable characteristics for further development 
(Wallach & Heifets, 2018; LeCun et al., 2015). Lastly, AI integrates 
data from chemical databases, literature, and experimental results, 
providing a comprehensive view that enhances decision-making in 
hit identification and lead optimization (Durrant & McCammon, 
2011; Lo et al., 2018). 
 
Application of AI in Manufacturing and Supply Chain 
Quality Control and Process Optimization 
Artificial Intelligence (AI) has played a transformative role in the 
areas of quality control (QC) and process optimization across 
various industries, including pharmaceuticals. Its contributions 
ensure product quality, regulatory compliance, and operational 
efficiency. A key application of AI in this field is automated visual 
inspection, where AI-driven image recognition and computer 
vision are employed to enable real-time product inspection. These 
systems detect defects and inconsistencies, improving both the 
accuracy and efficiency of QC (Van der Maaten & Hinton, 2008). 
Another important application is in spectroscopy and analytical 
techniques, where AI analyzes spectroscopic data in real-time to 
maintain the quality of raw materials and intermediate products. By 

utilizing machine learning models to detect patterns and deviations, 
AI enhances the precision of QC (Shanmugam, Muthukumar, & 
Palanisamy, 2019). 
AI is also pivotal in predictive maintenance, analyzing historical 
data to predict equipment failures. This allows for proactive 
maintenance that minimizes downtime and ensures consistent 
product quality (Wang & Li, 2015). In terms of process 
optimization and control, AI algorithms adjust manufacturing 
parameters in real time, reducing variations and enhancing 
efficiency. AI-enabled closed-loop control systems manage 
processes adaptively, ensuring operational consistency (Kadam, 
Jadhav, & Gambhire, 2014). Furthermore, AI helps in maintaining 
regulatory compliance and documentation by automating the 
documentation process and analyzing regulatory data, thereby 
reducing errors and supporting adherence to quality standards 
(Tang, Davison, & Ekel, 2006). 
Supply Chain Management 
Artificial Intelligence (AI) is revolutionizing supply chain 
management by automating processes, optimizing operations, and 
improving decision-making. One significant application of AI is in 
demand forecasting, where machine learning is used to analyze 
historical data and market trends, leading to improved inventory 
management and fewer stockouts (Garg & Deshmukh, 2006). In 
inventory management, AI takes into account factors such as 
demand variability and supplier performance, which helps prevent 
overstocking and reduces costs (Sarkis, 2003). 
Moreover, AI contributes to supplier relationship management by 
supporting risk assessment and performance monitoring. Natural 
Language Processing (NLP) is employed to analyze unstructured 
data, such as contracts, to enhance supplier evaluations (Riquelme 
& González, 2018). AI also optimizes logistics by improving 
transportation routes and adjusting delivery schedules in response 
to real-time changes (Coyle, Bardi, & Langley, 2003). Additionally, 
AI enables predictive maintenance, which prevents equipment 
failures and reduces downtime. When integrated with blockchain 
technology, AI enhances supply chain transparency and 
traceability, ensuring greater accountability and fostering trust 
(Iansiti & Lakhani, 2017). 
 
Application of AI in Clinical Trials 
Patient Recruitment and Eligibility 
AI is enhancing patient recruitment and eligibility in clinical trials 
by automating the identification of suitable participants. AI 
algorithms analyze electronic health records (EHRs), medical 
literature, and other healthcare data to identify potential 
candidates. NLP aids in extracting relevant information more 
accurately, and AI also helps optimize protocols by aligning trial 
criteria with patient data using machine learning, ensuring precise 
eligibility matching (Doshi-Velez & Perlis, 2014). Automated pre- 
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screening tools reduce manual workload and improve efficiency in 
identifying eligible participants (Holmes et al., 2012). Furthermore, 
predictive analytics enhance recruitment by forecasting enrollment 
rates, allowing trial sponsors to allocate resources effectively based 
on patient demographics and historical data (Ross et al., 2010). 
These AI-driven advancements streamline patient recruitment, 
improve accuracy, and enhance the overall efficiency of clinical 
research, ultimately accelerating drug development and clinical trial 
success (Wagholikar et al., 2014). 
Real-World Evidence and Adaptive Trial Design 
AI is also transforming clinical trial methodologies through real-
world evidence (RWE) and adaptive trial designs. AI algorithms 
analyze data from diverse real-world sources, including EHRs and 
wearables, providing a broader understanding of patient 
populations, disease progression, and treatment outcomes 
(Richesson & Hammond, 2013). AI enables patient stratification 
and subgroup identification, targeting specific patient profiles for 
adaptive trials, and predictive analytics help forecast recruitment 
rates and treatment responses (Sherif, Hassen, & Salem, 2019). This 
real-time adaptation of trial designs optimizes protocols and 
enhances trial efficiency (Obermeyer & Emanuel, 2016). AI further 
improves dynamic randomization by continuously adjusting 
patient allocation based on ongoing trial data and automates 
endpoint adjudication to ensure data quality (Pocock & Simon, 
1975). Overall, AI's integration of RWE and adaptive trial designs 
increases trial flexibility, efficiency, and success (Bryant, Fisher, & 
Gent, 1984). 
 
Application of AI in Personalized Medicine and Treatment 
Optimization 
Biomarker Discovery 
AI is revolutionizing biomarker discovery by analyzing complex 
datasets to identify critical markers for disease diagnosis, prognosis, 
and treatment. AI integrates multi-omics data, such as genomics 
and proteomics, to uncover potential disease-associated biomarkers 
(Cortes & Vapnik, 1995). Machine learning techniques, including 
support vector machines and deep learning, are employed to 
recognize patterns in biological data, revealing biomarkers (Guyon 
& Elisseeff, 2003). Additionally, AI aids in feature selection and 
dimensionality reduction, simplifying complex data to focus on the 
most relevant variables (Barabási & Oltvai, 2004). Network analysis 
reveals biomolecular interactions and pathways linked to disease 
mechanisms, and NLP accelerates biomarker discovery by mining 
biomedical literature for pertinent information (Cohen et al., 2005). 
Transfer learning techniques further enhance biomarker 
identification, even with limited data, significantly improving the 
efficiency and accuracy of biomarker discovery (Yosinski et al., 
2014). 
Treatment Decision Support 

AI plays a pivotal role in treatment decision support, enabling 
healthcare professionals to tailor therapies based on individual 
patient characteristics. AI supports personalized and effective 
clinical decision-making by integrating insights from diverse data 
sources. Key applications include: 
Medical Imaging Interpretation: AI aids in interpreting radiology 
and pathology images, identifying patterns and anomalies that 
guide treatment decisions (Esteva et al., 2017). 
Genomic Data Analysis: AI helps oncologists and geneticists 
customize therapies based on a patient’s genetic profile by analyzing 
genetic data (Katsila, Patrinos, & Kardamakis, 2017). 
Clinical Decision Support Systems (CDSS): AI-driven systems 
analyze patient data, EHRs, and medical literature to provide 
evidence-based treatment recommendations (Osheroff et al., 2007). 
Natural Language Processing (NLP): AI-powered NLP reviews 
large amounts of medical literature, assisting clinicians in staying 
updated with research and incorporating evidence-based practices 
(Névéol et al., 2014). 
Predictive Analytics: AI predicts potential treatment outcomes, 
helping to select the most effective options based on historical data 
(Obermeyer & Emanuel, 2016). 
Remote Patient Monitoring: AI processes data from wearables to 
track patient health in real time, enabling timely adjustments to 
treatment plans (Steinhubl, Muse, & Topol, 2015). 
 
Application of AI in Regulatory Compliance and 
Pharmacovigilance 
Regulatory Intelligence 
AI is increasingly utilized in regulatory compliance to monitor, 
analyze, and interpret evolving laws and standards throughout drug 
development. AI-powered tools automate the process of 
monitoring regulatory changes by scanning large volumes of 
documents, keeping organizations updated on new compliance 
requirements (Zhang et al., 2018). Natural Language Processing 
(NLP) simplifies complex regulatory texts, helping to identify key 
compliance needs (Lippi & Frasconi, 2010). Moreover, AI-driven 
predictive analytics can forecast regulatory trends based on 
historical data, allowing companies to proactively adjust their 
strategies (Obermeyer & Emanuel, 2016). AI also supports risk 
assessments by evaluating potential compliance risks and 
monitoring adherence to regulations. In addition, AI  
 
automates the generation of regulatory reports, ensuring accuracy 
and compliance (Grimmer & Stewart, 2013; Chen et al., 2015). 
These applications enhance organizational efficiency and agility, 
enabling adaptation to the dynamic regulatory landscape. 
Pharmacovigilance and Adverse Event Monitoring 
AI is revolutionizing pharmacovigilance by automating the 
detection of adverse events and improving post-market 
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surveillance. Machine learning algorithms analyze large datasets, 
including electronic health records and social media, to detect 
potential safety signals for adverse events associated with drugs 
(Aramaki et al., 2010). NLP further aids in extracting information 
from unstructured data sources like medical literature and social 
media (Lopes et al., 2017). AI-driven models predict potential 
adverse events using historical data, improving the speed and 
accuracy of signal detection (Harpaz et al., 2012). Real-world data 
from sources such as health records and wearable devices provide a 
broader view of patient experiences, facilitating early detection of 
adverse events (Khozin et al., 2017). AI automates the triage and 
processing of adverse event reports, prioritizing critical cases for 
faster responses (Wu et al., 2018). By monitoring patient-reported 
outcomes in real-time via social media, AI significantly enhances 
pharmacovigilance efforts, contributing to improved patient safety 
(Sarker et al., 2015). 
 
Challenges and Future Directions 
Data Privacy and Ethical Considerations 
The integration of AI into the pharmaceutical sector raises 
significant data privacy and ethical concerns. AI systems often 
handle sensitive patient data, such as electronic health records and 
genetic information, necessitating robust data anonymization, 
encryption, and de-identification techniques to ensure privacy 
(Fernández-Alemán et al., 2013). Transparency is crucial; patients 
must be fully informed about AI's role in their healthcare and give 
explicit consent for data usage (Gostin & Nass, 1997). Furthermore, 
AI algorithms can inherit biases from historical data, which may 
lead to unequal treatment outcomes (Beauchamp & Childress, 
2019). It is essential to implement measures to mitigate bias and 
ensure fairness in healthcare delivery (Obermeyer et al., 2019). 
Additionally, the reliance on AI increases vulnerability to cyber 
threats, making robust cybersecurity practices a priority. 
Ownership and control of data, especially when multiple 
stakeholders are involved, require clear guidelines (Kierkegaard, 
2015). Furthermore, the opaque nature of AI systems, often referred 
to as "black boxes," complicates accountability, highlighting the 
need for explainability and regular monitoring to maintain trust, 
accuracy, and ethical integrity (Vayena & Blasimme, 2017). 
 
Interoperability and Standardization Challenges 
The lack of standardization in data formats and the limited 
interoperability between AI systems present major barriers to 
collaboration and data sharing in the pharmaceutical industry. 
Pharmaceutical data originates from various sources, including 
electronic health records, clinical trials, and real-world evidence, 
but is often stored in heterogeneous formats. This fragmentation 
complicates seamless integration between AI systems and hampers 
collaboration (Musen et al., 2015). Moreover, the absence of 

standardized governance frameworks and data-sharing protocols 
adds further complexity. Integrating AI into legacy systems 
presents additional technological and regulatory hurdles (Kleiner & 
Talwalkar, 2015). Proprietary systems can also lead to vendor lock-
in, raising costs and limiting flexibility (Downing et al., 2017). 
Addressing these challenges through the establishment of common 
standards and collaborative frameworks is essential to fully realize 
AI's potential in pharmaceutical research and development 
(Wiederhold et al., 2012; Harpaz et al., 2012). 
 
Conclusion 
The pharmaceutical industry is undergoing a profound 
transformation fueled by the integration of artificial intelligence 
(AI), digital health technologies, and sustainable practices. AI 
accelerates drug discovery by enhancing predictive analytics, target 
identification, and the development of personalized medicine 
through data-driven insights and deep learning. It optimizes 
manufacturing and supply chain operations by improving quality 
control, process efficiency, and regulatory compliance. In clinical 
trials, AI streamlines patient recruitment, protocol design, and real-
time monitoring, boosting overall efficiency. Personalized medicine 
benefits from AI’s role in biomarker discovery, while regulatory 
compliance is supported through automated monitoring and risk 
assessment. Despite challenges like data privacy, ethical concerns, 
and interoperability barriers, collaboration and standardization are 
key to realizing AI’s full potential in creating more effective, 
personalized, and sustainable healthcare solutions. 
 

Author contributions 

All authors made equal contributions to the study design, statistical 
analysis, and drafting of the manuscript. The corresponding author, 
along with the co-authors, reviewed and approved the final version 
of the article prior to submission to this journal. 
 

Acknowledgment  

The authors were grateful to their department. 
 

Competing financial interests  

The authors have no conflict of interest. 
 

References 

Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., & Zhavoronkov, A. (2016). Deep 

learning applications for predicting pharmacological properties of drugs and 

drug repurposing using transcriptomic data. Molecular Pharmaceutics, 13(7), 

2524–2530. 

Anastas, P. T., & Warner, J. C. (1998). Green chemistry: Theory and practice. Oxford 

University Press. 

Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. (2016). Deep learning for 

computational biology. Molecular Systems Biology, 12(7), 878. 



ANGIOTHERAPY                                                                                                     REVIEW 
 

https://doi.org/10.25163/angiotherapy.899862                                                                                 1–7 | ANGIOTHERAPY | Published online September 11, 2024 
 

Aramaki, E., Miura, Y., Tonoike, M., & Ohkuma, T. (2010). Twitter catches the flu: detecting 

influenza epidemics using Twitter. In Proceedings of the Conference on 

Empirical Methods in Natural Language Processing (EMNLP) (pp. 1568–1576). 

Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: understanding the cell's functional 

organization. Nature Reviews Genetics, 5(2), 101–113. 

Baum, A., & Akbari, O. (2020). Targets for SARS-CoV-2 mRNA vaccination. New England 

Journal of Medicine, 383(17), 1673-1675. 

Beauchamp, T. L., & Childress, J. F. (2019). Principles of Biomedical Ethics. Oxford University 

Press. 

Berger, M. L., Sox, H., Willke, R. J., Brixner, D. L., Eichler, H. G., Goettsch, W., ... & Watkins, 

J. B. (2017). Good practices for real-world data studies of treatment and/or 

comparative effectiveness: Recommendations from the joint ISPOR-ISPE 

special task force on real-world evidence in health care decision making. 

Pharmacoepidemiology and Drug Safety, 26(9), 1033-1039. 

Bryant, J., Fisher, L., & Gent, M. (1984). The process of adjudication by committee in the 

clinical trial of symptomatic versus asymptomatic patients. Controlled Clinical 

Trials, 5(2), 99–110. 

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep 

learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. 

Chen, M., Hao, Y., Hwang, K., Wang, L., & Cho, C. (2015). Machine-to-machine 

communications: Architectures, standards, and applications. KSII Transactions 

on Internet and Information Systems, 9(6), 2236–2263. 

Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting 

from technology. Harvard Business Press. 

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., ... & 

Xie, W. (2018). Opportunities and obstacles for deep learning in biology and 

medicine. Journal of The Royal Society Interface, 15(141), 20170387. 

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., et al. 

(2018). Opportunities and obstacles for deep learning in biology and medicine. 

Journal of The Royal Society Interface, 15(141), 20170387. 

Cohen, A. M., Hersh, W. R., Dubay, C., & Spackman, K. (2005). Using co-occurrence network 

structure to extract synonymous gene and protein names from MEDLINE 

abstracts. BMC Bioinformatics, 6(1), 1–14. 

Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England 

Journal of Medicine, 372(9), 793-795. 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. 

Coyle, J. J., Bardi, E. J., & Langley, C. J. (2003). The management of business logistics: A 

supply chain perspective. South-Western Cengage Learning. 

Dai, Y., & Devarajan, K. (2017). Learnings from a decade of virtual screening in the 

pharmaceutical industry. Expert Opinion on Drug Discovery, 12(6), 511–522. 

Dehghan, A., & Casas, J. P. (2019). Personalised medicine and population health: Breast and 

ovarian cancer. The EPMA Journal, 10(3), 239–253. 

DiMasi, J. A., Grabowski, H. G., & Hansen, R. W. (2016). Innovation in the pharmaceutical 

industry: New estimates of R&D costs. Journal of Health Economics, 47, 20-33. 

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene 

expression data. Journal of Bioinformatics and Computational Biology, 3(2), 

185–205. 

Doshi-Velez, F., & Perlis, R. H. (2014). Discovering personal topics in documents: An efficient 

algorithm and its evaluation. Journal of Machine Learning Research, 15, 751–

773. 

Downing, N. S., Shah, N. D., Aminawung, J. A., Pease, A. M., Zeitoun, J. D., Krumholz, H. M., 

& Ross, J. S. (2017). Postmarket safety events among novel therapeutics 

approved by the US Food and Drug Administration between 2001 and 2010. 

JAMA, 317(18), 1854–1863. 

Durrant, J. D., & McCammon, J. A. (2011). NNScore: A neural-network-based scoring 

function for the characterization of protein-ligand complexes. Journal of 

Chemical Information and Modeling, 51(11), 2528–2545. 

Ekins, S., & Clark, A. M. (2018). Ligand-based target prediction for small molecules with 

artificial intelligence. Journal of Chemical Information and Modeling, 58(1), 

138–149. 

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). 

Dermatologist-level classification of skin cancer with deep neural networks. 

Nature, 542(7639), 115–118. 

FDA. (2020). Generic drugs. https://www.fda.gov/drugs/generic-drugs 

FDA. (2022). Current good manufacturing practice (CGMP) regulations. 

https://www.fda.gov/drugs/pharmaceutical-quality-resources/current-good-

manufacturing-practice-cgmp-regulations 

Fernández-Alemán, J. L., Señor, I. C., Lozoya, P. Á. O., & Toval, A. (2013). Security and privacy 

in electronic health records: a systematic literature review. Journal of Biomedical 

Informatics, 46(3), 541–562. 

Garg, A., & Deshmukh, S. G. (2006). A review of literature and an empirical study of supply 

chain integration: The Indian perspective. International Journal of Physical 

Distribution & Logistics Management, 36(9), 757–775. 

Gawehn, E., Hiss, J. A., & Schneider, G. (2016). Deep learning in drug discovery. Molecular 

Informatics, 35(1), 3–14. 

Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic 

content analysis methods for political texts. Political Analysis, 21(3), 267–297. 

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of 

Machine Learning Research, 3, 1157–1182. 

Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England 

Journal of Medicine, 363(4), 301-304. 

Harpaz, R., DuMouchel, W., Shah, N. H., Madigan, D., Ryan, P., & Friedman, C. (2012). Novel 

data-mining methodologies for adverse drug event discovery and analysis. 

Clinical Pharmacology & Therapeutics, 91(6), 1010–1021. 

High, K. A., & Roncarolo, M. G. (2019). Gene therapy. New England Journal of Medicine, 

381(5), 455-464. 

Holmes, J. H., Elliott, T. E., Brown, J. S., Raebel, M. A., Davidson, A., & Nelson, A. F. (2012). 

Clinical research data warehouse governance for distributed research networks 

in the USA: A systematic review of the literature. Journal of the American Medical 

Informatics Association, 19(2), 149–159. 

Iansiti, M., & Lakhani, K. R. (2017). The truth about blockchain. Harvard Business Review, 

95(1), 118–127. 

ICH. (1996). Guideline for good clinical practice E6(R2). https://ichgcp.net/ 

ICH. (2022). Regulatory affairs. https://www.ich.org/page/regulatory-affairs 

Kadam, R. U., Jadhav, A. R., & Gambhire, M. N. (2014). Quality by design: A holistic approach. 

International Journal of Research in Pharmacy and Chemistry, 4(3), 614–625. 



ANGIOTHERAPY                                                                                                     REVIEW 
 

https://doi.org/10.25163/angiotherapy.899862                                                                                 1–7 | ANGIOTHERAPY | Published online September 11, 2024 
 

Kaitin, K. I., & DiMasi, J. A. (2011). Pharmaceutical innovation in the 21st century: New drug 

approvals in the first decade, 2000–2009. Clinical Pharmacology & 

Therapeutics, 89(2), 183-188. 

Katsila, T., Patrinos, G. P., & Kardamakis, D. (2017). Whole genome sequencing in 

pharmacogenomics. Frontiers in Pharmacology, 8, 6. 

Khan, M. U., Shah, S. A. A., Ahmad, F., & Akram, M. (2017). A comprehensive review of 

marketing strategies in the pharmaceutical industry. Health Marketing 

Quarterly, 34(2), 134-146. 

Khozin, S., Blumenthal, G. M., & Pazdur, R. (2020). Real-world evidence and clinical trials. 

New England Journal of Medicine, 382(10), 958-962. 

Kierkegaard, P. (2015). Vulnerability, trust, and patient–doctor contracts. Journal of 

Medicine and Philosophy, 40(3), 244–264. 

Kleiner, A., & Talwalkar, A. (2015). A scalable bootstrap for massive data. Journal of the Royal 

Statistical Society: Series B (Statistical Methodology), 77(2), 233–269. 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

Lenselink, E. B., Ten Dijke, N., Bongers, B., Papadatos, G., Van Vlijmen, H. W. T., & Kowalczyk, 

W. (2017). Beyond the hype: deep neural networks outperform established 

methods using a ChEMBL bioactivity benchmark set. Journal of 

Cheminformatics, 9(1), 45. 

Lippi, M., & Frasconi, P. (2010). A survey of web information extraction systems. Data & 

Knowledge Engineering, 69(3), 259–267. 

Lopes, F. M., de Souza, T. P., & de Jesus, V. C. (2017). A systematic review of the use of social 

media for the dissemination of gray literature. Journal of the Medical Library 

Association, 105(2), 131–140. 

Mak, T. W., Saunders, M. E., & Jett, B. D. (Eds.). (2016). Primer to the immune response (2nd 

ed.). Academic Press. 

Mullard, A. (2021). 2020 FDA drug approvals. Nature Reviews Drug Discovery, 20(2), 85-90. 

Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nature Reviews Drug 

Discovery, 8(12), 959-968. 

Musen, M. A., Bean, C. A., Cheung, K. H., Dumontier, M., Durante, K. A., Gevaert, O., ... & 

Zheng, J. (2015). The center for expanded data annotation and retrieval. Journal 

of the American Medical Informatics Association, 22(6), 1148–1152. 

Névéol, A., Dalianis, H., Velupillai, S., Savova, G., & Zweigenbaum, P. (2014). Clinical natural 

language processing in languages other than English: opportunities and 

challenges. Journal of Biomedical Semantics, 5(1), 1–11. 

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, 

and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. 

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, 

and clinical medicine. New England Journal of Medicine, 375(13), 1216–1219. 

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an 

algorithm used to manage the health of populations. Science, 366(6464), 447–

453. 

Osheroff, J., Teich, J., Levick, D., Saldana, L., Velasco, F., Sittig, D., & Rogers, K. (2007). 

Improving outcomes with clinical decision support: An implementer’s guide. 

HIMSS. 

PhRMA. (2022). About us. https://www.phrma.org/about 

Pocock, S. J., & Simon, R. (1975). Sequential treatment assignment with balancing for 

prognostic factors in the controlled clinical trial. Biometrics, 31(1), 103–115. 

Prosperi, M., Min, J. S., Bian, J., & Modave, F. (2019). Big data hurdles in precision medicine 

and precision public health. BMC Medical Informatics and Decision Making, 

19(1), 1–9. 

Riquelme, J. C., & González, A. (2018). A review of machine learning for the prognosis of 

machinery health. Mechanical Systems and Signal Processing, 104, 799–834. 

Ross, J., Tu, S., Carini, S., Sim, I., & the Analysis and Design of Informatics. (2010). Analysis 

of eligibility criteria complexity in clinical trials. AMIA Summits on Translational 

Science Proceedings, 2010, 46–50. 

Sarker, A., Chandrashekar, P., Magge, A., Cai, H., Klein, A., Gonzalez, G., & Scotch, M. (2015). 

Discovering cohorts of pregnant women from social media for safety surveillance 

and analysis. Journal of Medical Internet Research, 17(10), e237. 

Sarkis, J. (2003). A strategic decision framework for green supply chain management. Journal 

of Cleaner Production, 11(4), 397–409. 

Shanmugam, S., Muthukumar, S., & Palanisamy, P. (2019). An intelligent system for quality 

control of pharmaceutical tablet using UV spectroscopy and machine learning. 

Journal of Pharmaceutical Analysis, 9(6), 451–457. 

Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: State 

of the art. Green Chemistry, 16(3), 950-963. 

Sherif, M. M., Hassen, D. I., & Salem, A. B. (2019). An artificial intelligence technique for 

predicting the possible risk of medical disease based on electronic health 

records. Health Information Science and Systems, 7(1), 1–10. 

Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2015). Can mobile health technologies transform 

health care? JAMA, 314(12), 1235–1236. 

Steinhubl, S. R., Muse, E. D., & Topol, E. J. (2015). The emerging field of mobile health. 

Science Translational Medicine, 7(283), 283rv3. 

Tang, Y., Davison, M., & Ekel, P. (2006). Data preparation for data mining. Applied Artificial 

Intelligence, 17(3), 375–381. 

Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human 

again. Hachette UK. 

Van der Maaten, L., & Hinton, G. (2008). Visualizing high-dimensional data using t-SNE. 

Journal of Machine Learning Research, 9(Nov), 2579–2605. 

Vayena, E., & Blasimme, A. (2017). Biomedical big data: new models of control over access, 

use and governance. Journal of Bioethical Inquiry, 14(4), 501–513. 

Wagholikar, K. B., MacLaughlin, K. L., Laje, P., & Sabb, F. W. (2014). Machine learning-based 

prediction of clinical trial enrollment. Journal of Biomedical Informatics, 52, 

296–307. 

Wang, D., & Li, P. (2015). Machinery fault diagnosis and signal processing—a review. Artificial 

Intelligence Review, 43(1), 83–119. 

WHO. (2019). Good distribution practices for pharmaceutical products. 

https://www.who.int/medicines/areas/quality_safety/quality_assurance 

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep 

neural networks? In Advances in Neural Information Processing Systems (pp. 

3320–3328). 

Zhang, X., Zhang, Y., Liu, Y., Hou, W., & Xu, J. (2018). Regulatory compliance in cloud service 

provisioning: A survey. IEEE Transactions on Cloud Computing, 6(2), 315–326. 


