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Abstract 
Background: Risky pregnancies present significant 

challenges in maternal healthcare, often requiring 

accurate prediction to prevent adverse outcomes. 

Machine learning (ML) models offer a promising approach 

for predicting such risks, enabling timely interventions. 

This study evaluates five machine learning models—

Logistic Regression, Decision Tree, K-Nearest Neighbors 

(KNN), Naive Bayes, and Support Vector Machine (SVM)—

for their effectiveness in predicting risky pregnancies 

using clinical datasets. Methods: The study developed and 

evaluated five ML models, each implemented using 

Python’s scikit-learn library. The dataset was split into 75% 

for training and 25% for testing. Standard classification 

metrics, including accuracy, precision, recall, and F1-

score, were used to assess model performance. 

Hyperparameter tuning was conducted using grid search 

and cross-validation to optimize model parameters. The 

models’ performance was compared to identify the most 

suitable for clinical applications. Results: The Decision 

Tree model achieved the highest accuracy (100% on 

training data, 95.6% on testing data), along with excellent 

precision, recall, and F1-scores for both classes, making it 

the most accurate and interpretable model for predicting 

risky pregnancies. Logistic Regression also performed  

well, particularly in identifying high-risk cases, with 

testing accuracy of 82%. KNN and SVM provided 

moderate accuracy, with KNN achieving 78% testing 

accuracy and SVM 80%. Naive Bayes, however, performed 

poorly, achieving only 43.2% accuracy due to its 

assumption of feature independence, which was not 

suitable for the dataset. Conclusion: The Decision Tree and 

Logistic Regression models emerged as the most effective 

for predicting risky pregnancies, offering high accuracy 

and interpretability, crucial for clinical decision-making. 

Keywords: Risky pregnancies, machine learning, Decision Tree, Logistic 

Regression, predictive modeling. 

Introduction 
Pregnancy represents a crucial phase in a woman's life, where 
maternal nutrition significantly influences both the mother's 
and the child's health. Proper nutrition during pregnancy is 
essential not only for ensuring the mother’s well-being but also 
for the healthy development of the fetus, shaping the child’s 
health both in childhood and adulthood. Maternal nutrition 
directly impacts the baby's birth weight, developmental 
milestones, and long-term health outcomes. The relationship 
between nutrition and pregnancy outcomes highlights the 
importance of dietary intake and its role in preventing 
pregnancy-related complications, including fetal growth 
restriction, preterm birth, and maternal health issues such as 
gestational diabetes or hypertension. Consequently, 
maintaining optimal maternal nutrition is critical not only for  
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avoiding complications during pregnancy but also for 
establishing a foundation for the child’s future health. 
Traditional approaches to assessing maternal nutrition 
primarily relied on clinical observations, medical histories, and 
sociodemographic data. While these methods provided some 
insight into a woman's nutritional status, they were often 
imprecise, unable to capture the complex and individualized 
nutritional needs of each woman and her fetus. The variability 
in nutrient requirements and dietary compliance among 
pregnant women further complicates the application of 
conventional methods for monitoring maternal nutrition. As a 
result, there has been a growing need for more accurate, 
personalized, and data-driven approaches to evaluating and 
predicting nutritional risks during pregnancy. 
Recent advancements in healthcare have demonstrated the 
potential of machine learning (ML) to revolutionize medical 
diagnosis, treatment, and patient care. ML techniques are 
particularly valuable in medical sciences because they can 
process vast amounts of structured and unstructured data, 
identify patterns, and generate predictive models that aid in 
clinical decision-making. In the context of maternal nutrition, 
ML offers a promising solution to the challenges of assessing 
nutritional risks during pregnancy. By leveraging data from 
various sources, including demographic information, maternal 
health records, pregnancy characteristics, and clinical 
measurements, ML models can provide more accurate and 
individualized predictions of nutritional risks. 
Several ML models have been proposed for use in pregnancy-
related nutritional risk assessment, each offering distinct 
advantages. Logistic Regression, for example, is widely used for 
its interpretability, allowing healthcare providers to identify the 
key risk factors for nutritional deficiencies or surpluses. This 
model helps clinicians understand the underlying factors 
influencing maternal health and can guide the development of 
personalized nutritional interventions. Decision Tree 
algorithms, on the other hand, are particularly effective in 
revealing interactions between variables that may not be 
apparent through traditional analysis methods. These models 
can identify complex relationships between maternal health 
factors, making them valuable tools for predicting pregnancy 
outcomes and guiding nutritional management. 
K-Nearest Neighbors (KNN) models further enhance risk 
prediction by comparing pregnancies with similar health 
profiles. This model can be particularly useful in diverse 
populations, where individual differences in health and 
nutrition may influence pregnancy outcomes. Naive Bayes, a 
probabilistic model, provides estimates of the likelihood of 
nutritional risks based on available data. By calculating 
probabilities, this approach offers healthcare providers a clear 
understanding of the potential risks facing each patient, 

allowing for proactive intervention. Finally, Support Vector 
Machines (SVMs) are highly effective at classifying pregnancies 
due to their ability to handle nonlinear relationships between 
variables, making them particularly valuable in complex cases 
where linear models fall short. 
The objective of this research is to assess the effectiveness of 
these ML models in predicting nutritional risks during 
pregnancy and improving prenatal care strategies. By evaluating 
the predictive accuracy of each model using established metrics, 
the study aims to provide healthcare practitioners with insights 
into the strengths and limitations of each approach. 
Additionally, the research will explore how these models can be 
used to individualize treatment plans, ensuring that each 
woman receives tailored nutritional advice and interventions 
based on her specific health profile and pregnancy 
characteristics. 
This study seeks to contribute to the growing body of literature 
on the application of ML in healthcare by demonstrating how 
these models can improve the accuracy of nutritional risk 
assessment during pregnancy. Ultimately, the findings aim to 
enhance maternal and child health by providing healthcare 
providers with the tools to offer more personalized, data-driven 
care throughout pregnancy. 
 
Literature Review 
Antenatal nutrition plays a pivotal role in shaping the health of 
both the mother and fetus, as well as the long-term health 
prospects of the child. Proper nutritional intake during 
pregnancy is essential for the development of the placenta, the 
prevention of birth defects, and the overall well-being of both 
the mother and child. Micronutrients such as folic acid, iron, 
calcium, and vitamins are especially important for promoting 
fetal development and preventing complications (Bodnar & 
Wisnar, 2015; Black et al., 2013). Research has consistently 
demonstrated the critical role of these nutrients in fetal growth 
and maternal health (Lassi et al., 2013; Barker, 2007). Despite the 
recognized importance of maternal nutrition, traditional 
methods for assessing it, such as dietary recalls and 
anthropometric indices, often fall short in tracking short-term 
changes and identifying complex interactions between different 
variables (Darnton-Hill et al., 2019; Subar et al., 2015). 
In the past decade, the integration of machine learning (ML) 
technologies in healthcare has transformed predictive models, 
improving outcomes in various medical fields, including 
maternal and child health (MCH) (Obermeyer & Emanuel, 
2016; Rajkomar et al., 2019). ML algorithms such as Logistic 
Regression, Decision Trees, and Support Vector Machines 
(SVM) have proven useful in analyzing vast datasets, ranging 
from demographic information to medical histories and 
biochemical indices, in order to predict maternal nutritional 
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risks (Zhang et al., 2020; Duarte et al., 2019; Halimuzzaman et 
al., 2024). The potential of these models to provide more 
accurate and individualized assessments of maternal nutrition is 
significant compared to traditional methods, especially as they 
offer greater precision in identifying risks and formulating 
personalized management plans. 
Among the ML models employed, Decision Trees have shown 
particular promise due to their ability to capture nonlinear 
relationships within the data. This makes them especially useful 
for identifying multifactorial risk factors that contribute to 
maternal health outcomes (Khalilia et al., 2011; Vellido et al., 
2012). For example, Decision Trees can reveal complex 
interactions between nutritional status, medical history, and 
demographic factors, providing a more nuanced understanding 
of the factors that influence pregnancy outcomes. K-Nearest 
Neighbors (KNN) models, on the other hand, improve 
prediction accuracy by comparing pregnancies with similar 
health profiles. This approach strengthens the precision of risk 
models for various subgroups of pregnant women (Altman, 
1992). 
Despite the potential of ML models to improve maternal 
nutrition predictions, several challenges remain. First, the 
development and implementation of these models require large, 
accurate datasets for training and testing. Without such datasets, 
the reliability of ML models in real-world applications is limited 
(Chowdhury et al., 2016; Liu et al., 2020). The use of data from 
wearable health devices and electronic health records (EHRs) 
offers a promising solution, as these sources can provide 
continuous and comprehensive data on maternal health. This, 
in turn, allows ML models to generate timely and accurate 
predictions that enable healthcare providers to intervene early 
and tailor treatment plans to each patient's unique profile 
(Thompson et al., 2019; Hsieh et al., 2018). 
Another challenge is the explainability of ML models in clinical 
practice. Many healthcare professionals are unfamiliar with the 
intricacies of ML algorithms, making it difficult to interpret the 
results and apply them to patient care. This issue underscores 
the need for more interpretable and user-friendly models that 
clinicians can trust and use in real-world settings. Additionally, 
concerns about data privacy and confidentiality must be 
addressed, especially when dealing with sensitive health 
information (Chowdhury et al., 2016; Liu et al., 2020). Ensuring 
the security of patient data is critical to the widespread adoption 
of ML in healthcare. 
Despite these challenges, ML models hold great promise for 
improving maternal nutrition assessments and individualized 
care plans during pregnancy. However, current research on the 
use of ML for nutrition prediction in pregnant women and 
children remains limited. While numerous studies have focused 
on predicting pregnancy-related complications such as 

gestational diabetes, preeclampsia, and preterm birth, few have 
specifically addressed nutritional deficiencies, which are crucial 
for both maternal and fetal health. This gap in the literature 
highlights the need for more research dedicated to developing 
ML models that can predict and manage nutritional risks in 
pregnant women and children. 
Moreover, many existing studies rely on small, localized datasets 
that do not capture the full diversity of the population. This 
limits the generalizability of the models, as they may not be 
applicable to different demographic groups or geographic 
regions. To improve the accuracy and relevance of ML models, 
future research should focus on collecting larger, more diverse 
datasets that account for variations in socioeconomic status, 
genetic background, and lifestyle factors. By doing so, 
researchers can develop more robust models that can be applied 
to a broader range of populations. 
Additionally, many current ML models are limited by the small 
number of variables they consider, often focusing only on basic 
demographic information and vital signs. To improve the 
prediction of maternal nutrition, future models must 
incorporate more complex datasets that include detailed dietary 
information, behavioral factors, and genetic data. By integrating 
a wider range of variables, ML models can provide a more 
comprehensive assessment of maternal nutritional status and 
predict potential risks more accurately. 
Another critical issue is the implementation of ML models in 
clinical practice. While numerous studies have demonstrated 
the potential of ML models in research environments, few have 
provided practical solutions for integrating these models into 
real-world healthcare settings. Issues such as data compatibility 
with existing EHR systems, the design of intuitive user interfaces 
for healthcare providers, and the need for explainable models 
must be addressed to facilitate the widespread adoption of ML 
in clinical practice. Moreover, ML models should be designed 
with healthcare disparities in mind to ensure that they do not 
exacerbate existing inequalities in maternal and child health 
outcomes. 
While ML models offer a promising approach to improving 
maternal nutrition assessments and individualized care during 
pregnancy, several challenges remain. Addressing these 
challenges will require a collaborative effort between researchers 
in ML, nutrition science, obstetrics, pediatrics, and public 
health. By developing more robust and applicable models, 
researchers can improve the accuracy of nutritional risk 
predictions and ultimately enhance the health outcomes of 
pregnant women and their children. With continued 
advancements in ML technology and data collection methods, 
the potential for ML to transform prenatal care and maternal 
nutrition is immense. However, careful consideration must be 
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given to the ethical, practical, and clinical implications of 
implementing these models in real-world healthcare settings. 
 
Materials and Methods 
In this study, we employed data from 998 pregnant women, 
collected through demographic, clinical, and health indicators, 
to identify risk factors for pregnancy complications. The dataset 
included the following features: gravida (pregnancy count), 
number of tetanus toxoid vaccinations (TiTi Tika), pregnancy 
week, weight, height, blood pressure, position of the baby, baby 
motion, fetal heart rate, urine test sugar level, VDRL test result, 
hepatitis B surface antigen (HBsAg), hepatitis B surface 
antibody (HBsAb), and whether the pregnancy was categorized 
as risky. Data were gathered from hospitals and other healthcare 
facilities, ensuring a broad and random sample across regions. 
Adherence to classroom sessions was emphasized during data 
collection. Healthcare personnel reviewed and validated patient 
charts to minimize errors, and patient consent was obtained to 
use their data while ensuring anonymity to protect patient 
privacy. 
Data Preprocessing 
Effective data preprocessing is a crucial step in preparing a 
dataset for analysis, especially when dealing with healthcare-
related data like pregnancy records. The aim of this process was 
to clean, transform, and standardize the data to ensure the 
machine learning models could efficiently process and analyze 
it. The preprocessing tasks included handling missing values, 
converting categorical data into numerical forms, scaling 
numerical features, splitting the data into training and testing 
sets, and performing feature selection. 
Imputation of Missing Values 
Handling missing values was one of the first steps in data 
preprocessing. For numerical variables, missing data was 
imputed by replacing the gaps with either the mean or median 
values, depending on the distribution of the specific variable. 
For example, if the variable followed a normal distribution, the 
mean was used. For skewed distributions, the median was 
preferred to ensure a more accurate representation of the 
missing data. Categorical variables, such as test results, were 
filled with the most frequent category to maintain consistency. 
In cases where a significant portion of the dataset was missing, 
these records were excluded to enhance the quality of the data. 
Encoding Categorical Variables 
Converting categorical variables into numerical values is 
necessary for machine learning models, which require numeric 
inputs. Binary variables, such as VDRL (Venereal Disease 
Research Laboratory) test results and HBsAG (Hepatitis B 
surface antigen) statuses, were encoded using binary encoding. 
For variables that had an ordinal nature, such as the number of 
pregnancies (Gravida) or Tifi Tika, ordinal encoding was 

applied. These features captured a progression and thus had an 
inherent order that needed to be respected during encoding. 
Normalization of Numerical Features 
The data set included features like age, weight, height, and blood 
pressure, which had different numerical ranges. To prevent 
models from being biased towards features with large values, 
normalization was necessary. In this study, Min-Max scaling 
was used to scale all numerical features within a fixed range, 
typically between 0 and 1. By standardizing the data, the risk of 
features with large numeric ranges dominating the learning 
process was minimized. This ensured that all features 
contributed equally to the models during training. 
Data Visualization and Histogram Matrix 
To better understand the distribution of various features, 
histograms were used to visualize the data. Figure 1 presented a 
grouped bar chart, commonly referred to as a Histogram Matrix 
or Panel of Histograms. This technique allowed for comparison 
across multiple variables, showing patterns such as age 
distribution, which suggested that most individuals in the 
dataset were under 25. Similarly, other features like Gravida 
showed most pregnancies had small values, with many cases 
having zero pregnancies. For certain variables, such as weight 
and height, clusters were observed in the histograms, indicating 
the presence of groups within the population that shared similar 
characteristics. 
Blood pressure also showed multiple peaks, suggesting varied 
conditions among patients. Other clinical variables like fetal 
heart rate exhibited bi-modal distributions, where distinct 
groups of heart rates were identified. The histograms for tests 
such as urine test sugar showed that most values were near zero, 
indicating a low prevalence of abnormal test results. Features 
like the position and movement of the baby in the womb were 
also included, with the histograms reflecting the typical range of 
values expected in the dataset. 
Splitting the Dataset 
To evaluate the performance of the machine learning models, 
the dataset was divided into training and testing sets. A common 
approach was followed, where 75% of the data was allocated for 
training and 25% for testing. This division allowed the model to 
learn from a significant portion of the data while still preserving 
enough unseen data to assess the model’s generalization ability. 
The split ensured that the model could be properly trained while 
allowing for effective evaluation against the test data. 
Feature Selection 
Feature selection was an essential part of the preprocessing 
process, as it helped to reduce dimensionality and improve 
model performance. A combination of statistical methods and 
domain expertise was used to select the most relevant features 
for predicting risky pregnancies. Statistical tests were performed 
to identify features that were significantly associated with the 
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outcome variable. At the same time, domain experts, such as 
obstetricians, were consulted to ensure that clinically 
meaningful features were included in the model. 
Domain Expertise Integration 
Incorporating domain expertise was vital for ensuring that the 
selected features had clinical relevance. Obstetricians and other 
healthcare professionals with expertise in pregnancy-related risk 
factors were interviewed to identify the most important 
indicators of risky pregnancies. By integrating clinical 
knowledge, the model's predictive power was enhanced, 
ensuring that the features used were not only statistically 
significant but also meaningful in a healthcare setting. 
The data preprocessing steps in this study involved imputation, 
encoding, normalization, data splitting, and feature selection. 
These techniques helped to prepare the data for analysis and 
model development. By addressing missing values, 
transforming categorical data, scaling numerical values, and 
selecting the most relevant features, the dataset was effectively 
prepped to allow for accurate and meaningful predictions 
regarding risky pregnancies. 
Model Development 
In this study, five machine learning models were developed and 
evaluated for predicting risky pregnancies: Logistic Regression, 
Decision Tree, K-Nearest Neighbors (KNN), Naive Bayes, and 
Support Vector Machine (SVM). These models were selected 
due to their widespread use in binary classification tasks, which 
aligned with the study's goal of identifying risk factors in 
pregnancies. 
Logistic Regression 
Logistic Regression, a linear model, was employed to estimate 
the probability of a binary outcome, making it ideal for 
classification tasks like this. Using the scikit-learn library, the 
dataset was split into a 75% training set and a 25% test set. The 
model was trained on the training data, and its performance was 
evaluated on the test set. Logistic Regression was chosen for its 
simplicity and interpretability, providing a benchmark for 
comparison with more complex models. The model’s results 
helped highlight which features had the most significant impact 
on the likelihood of a risky pregnancy. 
Decision Tree 
A Decision Tree model was developed to explore non-linear 
relationships between features. This model builds a tree-like 
structure where decisions are made at each node, leading to an 
outcome at the leaf level. The Decision Tree was implemented 
using the scikit-learn library, and hyperparameters were 
optimized through cross-validation to improve model 
performance. Decision Trees were selected due to their ability to 
model complex interactions between variables and their ease of 
interpretation, which can be valuable for understanding the 
factors influencing risky pregnancies. 

K-Nearest Neighbors (KNN) 
KNN is a non-parametric classification algorithm that assigns a 
class to a data point based on the majority class among its k-
nearest neighbors. The value of k was determined using cross-
validation to optimize model performance. The model was built, 
trained, and tested using scikit-learn. KNN was chosen for its 
flexibility in handling non-linear decision boundaries, making it 
a good candidate for exploring complex relationships in the 
pregnancy dataset. It also does not make assumptions about the 
underlying data distribution, making it adaptable to a variety of 
feature interactions. 
Naive Bayes 
Naive Bayes, based on Bayes’ theorem, assumes that all features 
are conditionally independent given the class label. Despite its 
simplicity, this model can be highly effective, particularly for 
large datasets. The Gaussian Naive Bayes variant was 
implemented using scikit-learn. This algorithm was selected 
because of its computational efficiency and speed, especially for 
large datasets like the one used in this study. Naive Bayes 
provided a fast and straightforward approach to classification, 
serving as another baseline for comparison with more complex 
models. 
Support Vector Machine (SVM) 
SVM is a robust classifier that identifies an optimal hyperplane 
to separate classes in the feature space. A linear SVM was used, 
with the kernel parameters fine-tuned through cross-validation. 
The model was implemented using scikit-learn, and its 
performance was tested on the test set. SVM was chosen for its 
effectiveness in high-dimensional spaces and its ability to handle 
non-linear data transformations via kernel functions. 
Additionally, SVM is less prone to overfitting, making it a 
valuable tool for classifying risky pregnancies. 
In summary, these five models were selected to explore different 
approaches to binary classification. Each model brought unique 
strengths to the analysis, from interpretability (Logistic 
Regression, Decision Tree) to handling non-linearity (KNN, 
SVM) and computational efficiency (Naive Bayes). This 
comprehensive evaluation allowed for a robust analysis of the 
factors contributing to risky pregnancies. 
Model Evaluation 
In this study, the performance of five machine learning 
models—Logistic Regression, Decision Tree, K-Nearest 
Neighbors (KNN), Naive Bayes, and Support Vector Machine 
(SVM)—was evaluated using standard classification metrics. 
These metrics included accuracy, precision, recall, and F1-score, 
providing a comprehensive overview of each model’s ability to 
classify risky and non-risky pregnancies. To ensure reliable 
results and reduce bias, hyperparameter tuning, grid search, and 
cross-validation were applied during model training and testing. 
Evaluation Metrics 
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The models were assessed using several key metrics commonly 
applied in classification tasks. These metrics allowed for 
evaluating not only the overall performance of each model but 
also their effectiveness in distinguishing between risky and non-
risky pregnancies. 
Accuracy 
Accuracy measures the proportion of correctly classified 
instances out of the total instances. While it is one of the simplest 
and most widely used evaluation metrics, accuracy can be 
misleading in cases of imbalanced datasets. For example, in this 
study, there might have been more non-risky pregnancies than 
risky ones, and a model could achieve high accuracy simply by 
predicting the majority class. As a result, additional metrics such 
as precision, recall, and F1-score were needed to provide a more 
complete evaluation. 
Precision, Recall, and F1-Score 
Precision is the ratio of correctly predicted positive instances to 
the total number of instances predicted as positive, focusing on 
the model’s ability to avoid false positives. Recall (or sensitivity) 
is the proportion of actual positive instances that the model 
correctly identified, which reflects the model’s ability to catch 
true positives. The F1-score is the harmonic mean of precision 
and recall, offering a balanced measure of a model’s 
performance when dealing with imbalanced data. This metric is 
particularly useful in assessing the model’s performance in 
predicting risky pregnancies. 
Hyperparameter Tuning 
To improve model performance, hyperparameter tuning was 
applied. This process involved adjusting the parameters of the 
models to optimize their accuracy and minimize overfitting. 
Grid search and cross-validation were used to fine-tune the 
hyperparameters. 
Grid Search 
Grid search was employed to explore a specified grid of 
hyperparameters and find the optimal combination for each 
model. This technique was particularly useful for models like 
SVM and KNN, where the selection of hyperparameters (such 
as the number of neighbors in KNN or the kernel type in SVM) 
plays a crucial role in determining the model’s efficiency and 
accuracy. 
Cross-Validation 
Cross-validation, specifically k-fold cross-validation, was used 
to evaluate model performance on different subsets of the data. 
In this study, 10-fold cross-validation was applied, where the 
data was divided into 10 equal parts, and the model was trained 
on nine parts while being tested on the remaining one. This 
process was repeated 10 times, each time with a different test set, 
and the results were averaged. Cross-validation helped to reduce 
overfitting and provided a more accurate assessment of the 
models’ generalization capabilities. 

Model Implementation and Testing 
The models were implemented using Python and the scikit-
learn toolkit. The dataset was divided into a training set (75% of 
the data) and a testing set (25% of the data). Each model was 
trained on the training data and then tested on the test data. The 
key performance metrics—accuracy, precision, recall, and F1-
score—were recorded for each model. 
Model Training 
Each machine learning model underwent multiple cycles of 
training, validation, and hyperparameter tuning. The training 
process involved fitting the models to the training data and 
adjusting their parameters to minimize error and maximize 
performance. During this phase, cross-validation was used to 
ensure that the models performed well across different 
partitions of the data. 
Model Testing 
Once the models were trained, they were tested on the test set. 
The test set was unseen by the model during training, ensuring 
that the evaluation reflected the model’s ability to generalize to 
new, unseen data. Accuracy, precision, recall, and F1-score were 
calculated for each model based on its predictions for the test 
set. 
Discussion and Analysis of Model Performance 
The results of the model evaluations provided insight into the 
strengths and weaknesses of each approach for predicting risky 
pregnancies. 
Logistic Regression 
Logistic Regression achieved a testing accuracy of 82%, making 
it a reliable model for binary classification tasks. However, a 
closer examination of the precision and recall for individual 
classes revealed that the model performed well in identifying 
high-risk pregnancies but struggled with low-risk pregnancies. 
This discrepancy suggests that while Logistic Regression offers 
simplicity and interpretability, it may require further refinement 
or adjustments to improve performance on imbalanced datasets. 
Decision Tree 
The Decision Tree model delivered strong results, with a testing 
accuracy of 95%. The model demonstrated high precision and 
recall for both classes, indicating its ability to interpret 
interactions between features effectively. However, the model 
achieved 100% accuracy on the training data, signaling potential 
overfitting. Techniques like pruning or ensemble learning could 
mitigate this issue in future iterations. 
K-Nearest Neighbors (KNN) 
KNN achieved a testing accuracy of 78% with relatively high 
precision and recall values. The performance improved as the 
number of neighbors (k) increased, as larger k values stabilized 
predictions. However, KNN’s effectiveness diminishes in high- 
dimensional spaces, making it less suitable for datasets with 
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Figure1. Histogram Matrix 
 

 
Figure 2.Logistic Regression Model 

 
Figure 3. Decision Tree Model 
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Figure 4. K-Nearest Neighbors (KNN) Model 

 
Figure 5. Naive Bayes Model 
 

 
Figure 6. Support Vector Machine (SVM) Model 

 
Figure 7. Train and Test Accuracy Models 
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many features. Despite this, KNN’s simplicity and flexibility 
make it a valuable model for initial analysis. 
Naive Bayes 
Naive Bayes yielded the lowest performance, with a testing 
accuracy of 43.2%. The model struggled with precision and 
recall for the ‘Yes’ class, indicating that its assumption of feature 
independence may not be suitable for this dataset. While Naive 
Bayes can be computationally efficient, its poor performance in 
this case suggests that it may not be the best choice for predicting 
risky pregnancies. Nonetheless, it could still be used in hybrid 
models. 
Support Vector Machine (SVM) 
SVM performed reasonably well, achieving an 80% testing 
accuracy. It was effective in predicting high-risk pregnancies but 
less so with low-risk pregnancies. SVM’s performance is highly 
influenced by the choice of kernel and hyperparameters. Further 
tuning, particularly the use of more complex non-linear kernels, 
could enhance its performance in future applications. 
 
Results 
This study evaluated the performance of five machine learning 
models—Logistic Regression, Decision Tree, K-Nearest 
Neighbors (KNN), Naive Bayes, and Support Vector Machine 
(SVM)—to predict risky pregnancies. The results from the 
classification models were compared based on metrics such as 
accuracy, precision, recall, and F1-score to determine their 
effectiveness in identifying pregnancies with potential risks. 
Below, we discuss the performance of each model, highlight its 
strengths and weaknesses, and consider its suitability for 
practical applications in predicting risky pregnancies. 
Logistic Regression Model 
The Logistic Regression model achieved an overall accuracy of 
78%, indicating that it performed relatively well in classifying 
risky pregnancies. Sensitivity (recall) on the training data was 
0.74, while specificity was 82%, demonstrating the model's 
ability to identify pregnancies that were correctly classified as 
risky or non-risky (Figure 2). 
On the test set, the precision for the "No" class was observed to 
be 0, meaning the model struggled to identify non-risky 
pregnancies accurately. However, the precision for the "Yes" 
class was much higher at 0.84, and the recall was 0.91. These 
results suggest that the model performed much better in 
predicting risky pregnancies than non-risky ones, as confirmed 
by an F1-score of 0.88 for the "Yes" class. The lower performance 
for the "No" class, with a recall of 0.61 and an F1-score of 0.67, 
indicates that the model could potentially miss non-risky cases. 
In a clinical setting, this might lead to unnecessary 
interventions, as the model tends to over-predict risk. 
Nonetheless, the high accuracy and precision for the "Yes" class 
highlight the Logistic Regression model’s suitability for 

applications where identifying risky pregnancies is paramount. 
The model’s ability to capture these cases is essential for 
preventing adverse outcomes in maternal and child health, 
making it an attractive option despite its limitations in 
classifying non-risky pregnancies. 
Decision Tree Model 
The Decision Tree model produced impressive results, 
achieving 100% accuracy on the training data, which indicates 
perfect classification of the training set. However, this level of 
performance on the training set suggests overfitting, where the 
model memorizes the training data and may not generalize well 
to new data. Overfitting was mitigated somewhat by achieving a 
testing accuracy of 95.6%, which still indicates strong 
performance (Figure 3). 
The precision for the "No" class was 0.93, while for the "Yes" 
class, it was 0.97, showcasing the model’s balance in handling 
both risky and non-risky pregnancies. Recall values were 
similarly high, at 0.92 for the "No" class and 0.97 for the "Yes" 
class, leading to F1-scores of 0.93 and 0.97, respectively. These 
high values suggest that the Decision Tree model can interpret 
the interactions between features effectively, identifying both 
types of pregnancies with a high degree of accuracy. 
The Decision Tree model's high interpretability and strong 
performance make it an ideal choice for clinical environments. 
Since healthcare professionals often require clear explanations 
for decision-making, the Decision Tree’s straightforward rules 
provide transparency in predictions. However, the risk of 
overfitting, as observed in this study, could be addressed by 
methods such as pruning or using ensemble techniques like 
Random Forests. 
K-Nearest Neighbors (KNN) Model 
The KNN model achieved an accuracy of 78% on both the 
training and testing sets, which suggests that it offers consistent 
performance. However, its precision and recall values across the 
classes were moderate, reflecting balanced but unremarkable 
predictions. The moderate F1-scores indicate that KNN 
performs adequately but is not as precise or robust as other 
models in this study (Figure 4). 
KNN’s performance is highly dependent on the choice of the 
hyperparameter 𝑘𝑘, which determines the number of neighbors 
used to classify a given instance. In this study, 𝑘𝑘 was optimized 
through cross-validation, but the model still did not outperform 
more sophisticated models like Decision Tree or Logistic 
Regression. While KNN is simple and computationally efficient, 
it may not be the best choice for predicting risky pregnancies, 
especially in high-dimensional datasets. 
Naive Bayes Model 
The Naive Bayes model performed the worst among the five 
models, with a testing accuracy of only 44%. This poor 
performance was due to the model's assumption of feature 
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independence, which was not valid for this dataset. The model’s 
specificity for the "No" class was 0.35, but its recall was 0.99, 
indicating that it could capture almost all non-risky cases. 
However, this came at the cost of a high false-positive rate, 
meaning many pregnancies were incorrectly classified as risky 
(Figure 5). 
For the "Yes" class, the model achieved a precision of 0.97, but 
its recall was only 0.19, resulting in a very low F1-score of 0.32. 
This disparity suggests that the Naive Bayes model is not suitable 
for datasets with dependent features, as it assumes that all 
features are independent of each other. Given its fast 
computational performance, Naive Bayes might be useful in 
certain cases, but it is clearly not a good fit for predicting risky 
pregnancies. 
Support Vector Machine (SVM) Model 
The SVM model achieved an overall accuracy of 76%, with 87% 
accuracy on the training set and 80% on the testing set. These 
results indicate that the model generalizes well and can handle 
the complexity of the dataset to some extent (Figure 6). 
The precision for the "No" class was 0.88, while the recall was 
0.79, resulting in an F1-score of 0.55 for this class. The "Yes" class 
achieved a higher F1-score of 0.87, with a precision of 0.98 and 
recall of 0.79. These results suggest that while SVM performs 
well in identifying risky pregnancies, it is somewhat less effective 
in identifying non-risky pregnancies, similar to the Logistic 
Regression model. SVM’s ability to handle high-dimensional 
spaces and its flexibility in managing non-linearity through the 
kernel trick make it a promising model. However, additional 
tuning of hyperparameters, particularly the choice of kernel, 
could lead to better results. 
 
Discussion 
The findings of this research provide insights into the strengths 
and limitations of various machine learning models for 
predicting risky pregnancies. Among the models tested, the 
Decision Tree emerged as the most effective, with the highest 
accuracy, precision, recall, and F1-scores across both the “Yes” 
and “No” classes. Its interpretability and ability to handle non-
linear relationships make it a suitable tool for clinical settings. 
The Decision Tree model achieved 100% accuracy on the 
training data and 95.6% on the testing data, making it highly 
reliable for identifying risky pregnancies (Figure 7). However, 
the perfect accuracy on training data suggests some overfitting, 
although the model still generalized well to unseen data. 
Logistic Regression also performed well, particularly for the 
“Yes” class, where it demonstrated high precision and recall, 
with an F1-score of 0.88. This model is particularly useful for 
predicting risky pregnancies, as it trends towards higher 
accuracy when identifying potential risks. However, its 
performance for the "No" class was less robust, indicating some 

potential for over-predicting risk. Despite this, Logistic 
Regression can be considered a strong contender for analyzing 
pregnancy risks due to its high efficiency in clinical predictions. 
The K-Nearest Neighbors (KNN) model achieved moderate 
accuracy, both in training and testing, at 78%. This consistency 
suggests that KNN provides a balanced performance but may 
not offer the same level of precision as the Decision Tree or 
Logistic Regression models. However, KNN’s performance is 
influenced by the choice of hyperparameters, such as the value 
of 𝑘𝑘, which was optimized in this study but still did not 
outperform the other models. 
The Support Vector Machine (SVM) model demonstrated 
moderate success with an accuracy of 80% on the testing data. 
While it performed well, especially in high-dimensional spaces, 
it could benefit from further tuning of its parameters to improve 
classification performance, particularly for non-risky 
pregnancies. The SVM model's flexibility and robustness make 
it a reliable option, but fine-tuning is necessary to enhance its 
precision and recall further. 
Naive Bayes performed the worst among the models, with a 
testing accuracy of only 43%. Its poor performance can be 
attributed to its assumption of feature independence, which 
does not hold in this dataset. While Naive Bayes is 
computationally efficient, it is not well-suited for this problem, 
given the dependent nature of the features involved in 
predicting pregnancy risks. 
 
Conclusion 
In conclusion, the study evaluated multiple machine learning 
models to predict risky pregnancies, revealing both their 
strengths and limitations. The Decision Tree model proved to 
be the most accurate and interpretable, making it highly suitable 
for clinical applications. Logistic Regression also showed 
promising results, particularly for predicting high-risk 
pregnancies, making it another viable model for this context. 
Both K-Nearest Neighbors (KNN) and Support Vector Machine 
(SVM) models demonstrated moderate performance, with 
room for improvement through parameter tuning. In contrast, 
Naive Bayes performed poorly due to its strong assumption of 
feature independence, which was not appropriate for the 
dataset. 
The Decision Tree and Logistic Regression models stand out for 
their practical utility in healthcare, as they offer high accuracy 
and are easily interpretable by healthcare professionals. These 
models are well-positioned to support clinical decision-making 
related to pregnancy risks. The findings suggest that future work 
could explore ensemble methods, such as Random Forests or 
Boosting, to further enhance predictive performance. 
Additionally, increasing the dataset size and incorporating more 
features could improve model generalization, enabling better 
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predictions in real-world applications. The research sets a solid 
foundation for further advancements in machine learning-
based predictions in maternal healthcare. 
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