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Abstract 
Background: Ovarian carcinoma remains one of the 

deadliest gynecological malignancies due to its 

heterogeneity and late-stage detection. Accurate 

classification of its subtypes—High-Grade Serous 

Carcinoma (HGSC), Clear-Cell Carcinoma (CC), 

Endometrioid Carcinoma (EC), Low-Grade Serous 

Carcinoma (LGSC), and Mucinous Carcinoma (MC)—is 

essential for tailored treatments, yet traditional 

histopathological methods often lack precision. This study 

aimed to develop a deep learning (DL) model to enhance 

ovarian cancer subtype classification using 

histopathological images. Methods: Histopathological 

images were collected from medical repositories, and data 

augmentation techniques were applied to increase 

dataset diversity. Two convolutional neural network (CNN) 

architectures, VGG16 and MobileNetV2, were fine-tuned 

using transfer learning to classify the subtypes. The 

models were pre-trained on the ImageNet dataset and 

evaluated through accuracy, precision, recall, F1-score, 

and ROC-AUC, with K-fold cross-validation ensuring 

robustness. Results: Results indicated that VGG16 

improved classification over baseline CNN models, while  

MobileNetV2, with Squeeze-and-Excitation (SE) blocks, 

achieved the highest performance, offering greater 

accuracy and computational efficiency. MobileNetV2’s 

lightweight architecture captured intricate tissue 

patterns more effectively, making it the superior model. 

Conclusion: This study highlights the potential of 

advanced DL models, particularly MobileNetV2 with SE 

block attention, for improving ovarian cancer subtype 

classification. These findings offer promising implications 

for clinical practice and personalized treatment 

approaches. Future research should focus on larger 

datasets and integrating multimodal data for further 

advancements. 

Keywords: Ovarian carcinoma, Deep learning, Convolutional neural 

networks, MobileNetV2, Transfer learning. 

Introduction 

Ovarian carcinoma is one of the deadliest malignancies arising from 
the female genital system, largely due to the morphological 
heterogeneity of its histopathological types and the fact that it is 
often diagnosed at an advanced stage. The five major subtypes—
High-Grade Serous Carcinoma (HGSC), Clear-Cell Ovarian 
Carcinoma (CC), Endometrioid Carcinoma (EC), Low-Grade 
Serous Carcinoma (LGSC), and Mucinous Carcinoma (MC)—
differ morphologically, molecularly, and clinicopathologically. 
These differences necessitate precise classification to enable more 
effective management strategies tailored to each subtype. 
Conventional diagnostic techniques, such as histopathological 
assessments by pathologists, can be inconsistent and subject to  
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observer variability. However, new technologies, such as 
computational pathology utilizing artificial intelligence (AI) and 
machine learning (ML), show promise in improving diagnostic 
accuracy and consistency. Convolutional neural networks (CNNs) 
and other deep learning models have demonstrated impressive 
results in image analysis, including medical imaging. CNNs can 
learn and extract hierarchical features directly from raw image data, 
making them valuable tools for histopathological image analysis. 
However, classifying ovarian cancer subtypes remains challenging 
due to the subtle differences between them. In this work, we aim to 
develop a deep learning model capable of accurately classifying 
ovarian cancer subtypes using histopathological images. We 
employ transfer learning to enhance the model's performance on 
this classification task. Our dataset includes well-curated 
histopathological images representing each of the five subtypes. 
Advanced data preprocessing and augmentation techniques are 
applied to improve the model's reliability and applicability. 
Through thorough testing and analysis, this work seeks to set a new 
standard for evaluating ovarian cancer subtypes, contributing to the 
development of personalized treatment strategies. 
 
2. Literature Review 
Ovarian cancer remains a formidable challenge in gynecological 
oncology due to its high mortality rates, frequent late-stage 
diagnosis, and the wide range of histopathological subtypes it 
encompasses. Despite advances in diagnostic techniques and 
treatment protocols, the prognosis for ovarian cancer patients has 
not significantly improved, largely because of the disease's 
complexity and heterogeneity. Innovations in deep learning and 
computational pathology, however, have recently emerged as 
promising tools that can enhance the prognostic and diagnostic 
capabilities in ovarian cancer care. This paper reviews the literature 
on these innovations, focusing on the application of deep learning 
to improve diagnostic accuracy and the classification of ovarian 
cancer subtypes. 
One of the most important histopathological subtypes of ovarian 
cancer is high-grade serous carcinoma (HGSC), which is not only 
the most common but also the most lethal form. HGSC is a 
heterogeneous disease, with genetic and clinical variations that are 
reflected in its histopathology. Most patients with HGSC exhibit 
mutations in the BRCA1/2 genes and abnormalities in homologous 
recombination DNA repair, which contribute to the aggressive 
nature of the disease. Other important but less frequent subtypes 
include endometrioid carcinoma and clear cell carcinoma. These 
subtypes differ in their molecular and clinical characteristics, 
further complicating the diagnosis and treatment of ovarian cancer. 
Given this diversity, the accurate classification of ovarian cancer 
subtypes is critical for effective treatment planning. 
Historically, ovarian cancer diagnosis has relied on 
histopathological analysis, a method that is highly dependent on the 

expertise of individual pathologists. This subjectivity can lead to 
variability in diagnostic accuracy, which poses a significant 
challenge for effective patient care. Deep learning, specifically 
convolutional neural networks (CNNs), offers a potential solution 
to this problem by providing objective, reproducible, and highly 
accurate diagnostic tools. CNNs have already proven to be 
extremely effective in image classification tasks across various 
medical fields, including histopathological image analysis. 
Several studies have demonstrated the potential of deep learning 
models in cancer diagnosis. Esteva et al. (2021) and Ehteshami 
Bejnordi et al. (2017) showed that deep learning could identify 
cancerous tissue with high sensitivity and specificity. These models, 
when trained on large sets of annotated images, can learn to 
distinguish between subtle features in histopathological images 
with a level of precision that surpasses traditional visual 
methodologies. However, while deep learning has been extensively 
researched and applied in other areas of cancer diagnosis, its 
application in ovarian cancer remains underexplored. 
For instance, Lu et al. (2021) presented a deep learning model that 
effectively classified ovarian cancer subtypes, demonstrating 
improved performance compared to conventional diagnostic 
models. Similarly, Howard and Gugger (2020) and Halimuzzaman 
et al. (2024) have highlighted the potential of techniques such as 
transfer learning and data augmentation to enhance the 
performance of deep learning models. Transfer learning involves 
using pre-trained models, often trained on large datasets like 
ImageNet, and fine-tuning them for specific tasks with limited 
labeled data. This approach not only improves model performance 
but also reduces the need for large amounts of annotated data, 
which can be difficult to obtain in medical imaging. 
One of the primary challenges in the clinical adoption of deep 
learning models is ensuring the interpretability of the models' 
decisions. Pathologists need to understand and trust the decisions 
made by deep learning algorithms in order to incorporate them into 
clinical practice. Transfer learning has shown promise in this 
regard, as models fine-tuned for medical applications can offer 
insights into how decisions are made based on histopathological 
features. Researchers have reported positive outcomes when 
applying transfer learning to ovarian cancer, suggesting that this 
technique can help overcome the interpretability challenge. 
Another critical aspect of developing robust deep learning models 
for ovarian cancer diagnosis is the quality and quantity of the 
training data. Data augmentation and preprocessing are essential to 
creating models that are both reliable and generalizable. Common 
data augmentation techniques include random rotations, flips, and 
adjustments in color intensity, all of which help to simulate the 
variability encountered in real-world datasets. These methods are 
particularly important in medical imaging, where datasets are often 
noisy or limited in size. 
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In addition to data augmentation, synthetic data generation has 
emerged as a valuable tool for overcoming the scarcity of annotated 
medical images. Generative adversarial networks (GANs) have 
been used to create high-quality synthetic data that can supplement 
real datasets during model training. This approach not only 
increases the size of the training dataset but also addresses 
variability in the types of data the model is likely to encounter in 
clinical settings. GANs have proven particularly useful in 
generating synthetic histopathological images, which can be used to 
improve the performance of deep learning models for ovarian 
cancer classification. 
The effectiveness of CNNs in medical image analysis has been 
demonstrated across various studies. For example, Rajpurkar et al. 
(2017) developed CheXNet, a CNN model that outperformed 
radiologists in identifying pneumonia from chest X-rays. Similar 
strategies have been applied in the diagnosis and management of 
other cancers, including ovarian cancer. Coudray et al. (2018) used 
deep learning to predict mutations from histopathology images of 
lung cancer, achieving high accuracy and demonstrating the 
feasibility of using imaging data to make genomic predictions. 
Numerous reviews have been conducted on the growth of deep 
learning in medical image analysis, highlighting the importance of 
large annotated datasets, sound preprocessing techniques, and 
model interpretability for clinical adoption. These reviews 
underscore the potential of deep learning to revolutionize cancer 
diagnosis by providing tools that are not only more accurate but 
also more interpretable than traditional methods. In the context of 
ovarian cancer, these advancements could lead to earlier and more 
accurate diagnoses, enabling more personalized treatment 
approaches and ultimately improving patient outcomes. 
Deep learning holds great promise for the diagnosis and 
classification of ovarian cancers. CNN-based models offer 
significant improvements in diagnostic sensitivity, specificity, and 
interpretability. These advancements open the door to more 
personalized treatment regimens, which are crucial for improving 
survival rates in ovarian cancer patients. However, for deep learning 
models to be fully integrated into clinical practice, further research 
is needed to address challenges such as data scarcity, model 
interpretability, and clinical validation. With continued innovation, 
deep learning could play a pivotal role in transforming ovarian 
cancer care and advancing the practice of precision medicine. 
 
3.Methodology 
Data Preparation 
In developing a robust deep learning model for ovarian cancer 
classification, proper data preparation is critical for enhancing 
model stability, accuracy, and generalizability. This section 
describes the comprehensive steps taken to prepare the dataset, 
including data acquisition, ethical considerations, data 
augmentation, and preprocessing methods. 

Dataset Acquisition 
Data for this study were sourced from multiple medical image 
archives and obtained through partnerships with clinical centers 
specializing in ovarian cancer treatment. The dataset consists of 
high-resolution histopathological images of ovarian cancer tissue 
samples, categorized into five distinct subtypes: High-Grade Serous 
Carcinoma (HGSC), Clear-Cell Ovarian Carcinoma (CC), 
Endometrioid Carcinoma (EC), Low-Grade Serous Carcinoma 
(LGSC), and Mucinous Carcinoma (MC). Each subtype is 
represented by hundreds of images, ensuring that a wide range of 
morphological variations in ovarian cancer tissues is captured. This 
diversity in the dataset increases the likelihood of the model’s ability 
to generalize well across different tissue types and clinical scenarios. 
Data Set Link is  
https://data.mendeley.com/datasets/kztymsrjx9/1 
Ethical Considerations 
Ethical standards are paramount when handling medical images. 
This study followed established guidelines for the use of human 
subject data in research. All patient data were anonymized to 
maintain confidentiality, and the necessary permissions were 
obtained from Institutional Review Boards (IRBs) at the 
collaborating clinical institutions. Adherence to these ethical 
standards ensures that the research complies with regulatory 
requirements and safeguards patient privacy. 
 Data Augmentation 
Data augmentation is a key step in addressing the challenge of 
limited labeled medical images, which are often insufficient for 
training complex deep learning models. By applying augmentation 
techniques, new images were generated from the existing dataset to 
simulate a larger and more diverse pool of images. This reduces the 
risk of overfitting by exposing the model to more variations in the 
training data. 
The augmentation techniques employed in this study include: 
Random Rotations: Images were rotated by random angles to 
simulate different orientations of tissue samples, which is common 
in real-world medical imaging. 
Flips: Horizontal and vertical flips were applied to introduce 
variations in spatial orientation. 
Brightness Adjustments: To account for differences in staining and 
imaging conditions, brightness levels were randomly adjusted to 
standardize the appearance of tissue samples across the dataset. 
Contrast Adjustments: Contrast levels were altered to improve the 
visibility and readability of key structures within the tissue samples, 
ensuring that the model can accurately learn from a variety of image 
qualities. 
Image Preprocessing 
Preprocessing of histopathological images is essential to ensure 
compatibility with deep learning models. Several key preprocessing 
steps were applied: 
Resizing: All images were resized to 224x224 pixels, which is the 
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input dimension required by commonly used pre-trained models 
like VGG16 and MobileNetV2. This ensures uniformity in input 
size, allowing for consistent training and evaluation. 
Normalization: Pixel values, originally in the range of 0 to 255, were 
normalized to a range of 0 to 1 by dividing each pixel value by 255. 
Normalization aids in stabilizing the training process and 
accelerates model convergence by standardizing input data. 
Grayscale Conversion: Although the deep learning models are 
generally designed to process RGB images, grayscale conversion 
was applied in certain cases to reduce the dimensionality of the data. 
This technique emphasizes the textural features of the tissue 
samples, which can be critical for distinguishing between different 
ovarian cancer subtypes. 
These data augmentation and preprocessing techniques play a vital 
role in improving the quality and quantity of training data, which, 
in turn, enhances the model’s performance in classifying ovarian 
cancer subtypes. By carefully addressing the challenges associated 
with histopathological images, the prepared dataset ensures that the 
deep learning model is better equipped to handle variability and 
produce reliable, accurate predictions. 
Dataset Splitting 
The dataset used in this study was divided into three subsets: 
training, validation, and test sets. This division is crucial for training 
the model effectively, optimizing hyperparameters, and assessing 
the model's performance. A 70:15:15 split ratio was applied, 
ensuring that a substantial portion of the data was allocated for 
training while leaving adequate data for both validation and testing. 
Specifically, the training set consisted of 70% of the data, used to 
train the deep learning models. Data augmentation techniques were 
applied exclusively to the training set to improve the learning 
process. The validation set, comprising 15% of the data, was used to 
fine-tune the model’s hyperparameters and monitor its 
performance during training, helping to prevent overfitting. 
Mechanisms such as early stopping and model checkpointing were 
implemented to track the performance on the validation set. Finally, 
the remaining 15% of the dataset was reserved as the test set. This 
set was not involved in the training process, ensuring an unbiased 
evaluation of the model’s performance on unseen data at the end of 
the training cycle. 
Class Balancing 
In medical datasets, class imbalance can be a significant issue, 
especially in classification tasks where certain categories may have 
far fewer samples than others. This imbalance can lead to the model 
becoming biased toward the more frequent classes, potentially 
resulting in poor performance on the minority classes. To address 
this, class weights were computed and incorporated into the 
model’s training process. These weights were determined based on 
the inverse frequency of each class within the dataset, ensuring that 
less frequent classes received more weight during training. This 
technique helped penalize the model for misclassifying minority 

classes, thus improving its overall performance and balancing its 
ability to classify all subtypes of ovarian cancer equally well. 
Model Development 
The development of a robust and accurate model for deep learning 
classification of ovarian cancer subtypes required careful attention 
to model architecture selection, transfer learning, and fine-tuning. 
Two models, VGG16 and MobileNetV2, were chosen for their 
proven track record in image classification tasks and their 
architectural simplicity. 
VGG16: VGG16 is a well-established convolutional neural network 
(CNN) model consisting of 16 layers, including convolutional, 
pooling, and fully connected layers. The model employs small (3x3) 
convolution filters and has a deep architecture, allowing it to learn 
complex representations from input images. The VGG16 model 
pre-trained on the ImageNet dataset provided an excellent 
foundation for transfer learning in this study. 
MobileNetV2: MobileNetV2 is a more computationally efficient 
CNN architecture designed for mobile and embedded applications. 
It uses depthwise separable convolutions, reducing the number of 
parameters and computations, which makes it lightweight yet 
effective. MobileNetV2's architecture includes inverted residuals 
and linear bottlenecks, which enhance the model’s ability to extract 
and represent features in images efficiently. 
 Transfer Learning 
Transfer learning was utilized to leverage pre-trained models, 
allowing the classifier to benefit from weights learned on the large-
scale ImageNet dataset. This approach is particularly beneficial in 
medical imaging, where labeled datasets are often small. The 
process of transfer learning followed these key steps: 
Initialization with Pre-trained Weights: Both VGG16 and 
MobileNetV2 models were initialized with weights pre-trained on 
the ImageNet dataset. This provided a strong starting point, as the 
models had already learned to extract important features from a 
wide variety of natural images. These features could then be adapted 
for ovarian cancer classification. 
Customizing the Final Layers: The last two layers of the pre-trained 
models were removed and replaced with new layers suited to the 
specific task of ovarian cancer classification. In this case, the output 
layer was modified to contain five neurons, each representing one 
of the five subtypes of ovarian cancer. A SoftMax activation 
function was applied to generate probabilities for each class, 
allowing the model to output the likelihood that an image belonged 
to each subtype. 
Freezing and Fine-Tuning: Initially, the convolutional layers of the 
pre-trained models were frozen, meaning they were not updated 
during the training process. Only the newly added custom layers 
were trained on the ovarian cancer dataset. This approach allowed 
the model to retain the general feature extraction capabilities 
learned from the ImageNet dataset. Once the performance of the 
model stabilized, some of the pre-trained layers were unfrozen and 
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fine-tuned. This fine-tuning process allowed the pre-trained 
features to be further adapted to the specific characteristics of 
histopathological images, improving the model’s overall accuracy. 
Model Training and Evaluation 
The model training process focused on optimizing performance 
while minimizing overfitting by frequently validating the model 
during training. Initially, the training set was used to tune the 
model's parameters, and the validation set was employed to 
monitor the model’s performance at each step, ensuring that it 
generalizes well without overfitting. The key steps involved in this 
process are outlined below. 
Loss Function and Optimizer 
To calculate the difference between predicted and actual class 
probabilities, the categorical cross-entropy loss function was used. 
This loss function is well-suited for multi-class classification tasks. 
The Adam optimizer, known for its efficiency and adaptive learning 
rate capabilities, was employed to minimize the loss function. This 
combination ensured that the model converged quickly while 
maintaining stability during training. 
Early Stopping and Model Checkpointing 
Early stopping was utilized to prevent overfitting by monitoring the 
model's performance on the validation set. When the performance 
began to decline, the training process was halted, ensuring that the 
model did not become overly specialized in the training data. 
Additionally, model checkpointing was implemented to save the 
version of the model that achieved the best validation performance. 
This ensured that the final model used for evaluation was the most 
effective version based on validation metrics. 
Class Weights 
To address the potential issue of class imbalance, class weights were 
incorporated into the loss function. These weights ensured that the 
model paid appropriate attention to underrepresented classes, 
preventing the model from being biased toward more frequent 
classes. This technique helped improve the overall balance, 
performance, and stability of the system, particularly in correctly 
classifying less frequent ovarian cancer subtypes. 
Evaluation and Validation 
The final trained model was evaluated on the test dataset to assess 
its generalization capabilities. Key performance metrics included 
accuracy, precision, recall, area under the ROC curve (ROC-AUC), 
and F1 score for each ovarian cancer subtype. These metrics 
provided a comprehensive evaluation of the model's ability to 
accurately classify the subtypes. To further ensure model stability, 
k-fold cross-validation was employed. The dataset was split into k 
subsets, and training was repeated k times, with each subset used as 
the validation set once. The final results were calculated as the 
average across all folds, providing a robust assessment of model 
performance. 
Experimental Analysis 

This research's experimental phase focused on training, validating, 
and testing deep learning models for the classification of ovarian 
cancer subtypes. The experiments were designed to assess model 
performance by splitting the dataset appropriately and evaluating 
several key metrics. This section outlines the experimental setup, 
evaluation metrics, and models used in the analysis. 
Experimental Setup 
The dataset was split into training, validation, and test sets to ensure 
reliable model evaluation. The training set comprised 70% of the 
total data, which was used to train the deep learning models. The 
validation set, which made up 15% of the dataset, was used for 
tuning hyperparameters and reducing overfitting during the 
training process. The remaining 15% of the data was set aside as the 
test set for final model evaluation. 
Fixed-ratio sampling was employed to ensure that each ovarian 
cancer subtype had an equal representation in all subsets. This 
stratified approach ensured that each class was proportionally 
represented, allowing for balanced training and testing across the 
different subtypes. This intentional distribution of the data ensured 
sufficient data for model training while also leaving enough data for 
robust testing. 
Evaluation Metrics 
To assess the performance of the models comprehensively, several 
evaluation metrics were utilized: 
Accuracy: This metric measured the proportion of total samples 
that were correctly classified by the model. It provided a general 
overview of model performance but could be misleading in the case 
of class imbalance. 
Precision: This metric indicated the percentage of correctly 
predicted positive cases out of all cases predicted as positive by the 
model. It was particularly useful for evaluating performance in 
datasets with imbalanced classes. 
Recall: Recall measured the proportion of true positive cases 
identified by the model out of the total actual positive cases in each 
class. This metric focused on the model’s ability to capture all true 
positives. 
F1-Score: The F1-score represented the harmonic mean of 
precision and recall, providing a balanced evaluation that 
considered both false positives and false negatives. 
ROC-AUC: The area under the receiver operating characteristic 
curve (ROC-AUC) was used to evaluate the model's discriminatory 
ability across all classes. A higher ROC-AUC indicated better 
classification performance. 
Model Training 
Various deep learning models were trained and evaluated, 
including both basic convolutional neural networks (CNNs) and 
transfer learning models. To prevent overfitting, early stopping was 
implemented to halt training when validation accuracy no longer 
improved. Model checkpointing was also employed, saving the 
best-performing model at each epoch for later use in testing. 
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     Table 1. Comparison of Deep Learning Approaches for Ovarian Cancer Diagnosis and Classification 
Sl. 
No. 

Study Methodology Key Findings Dataset Size Accuracy/ 
Performance 

Interpretability 
Tools 

1 Esteva et  al. 
(2021) 

CNN, Transfer 
Learning 

High sensitivity and 
specificity in cancer 
detection 

Large-scale 
dataset (Image 
Net) 

High performance with 
transfer learning 

SHAP, Grad-
CAM 

2 Ehteshami 
Bejnordi et al. 
(2017) 

CNN Accurate detection of 
lymph node metastases 

400 WSIs AUC of 0.925 Grad-CAM 

3 Lu et al. (2021) CNN, Transfer 
Learning 

Significant improvement s 
in subtype classification 

Public 
histopathology 
dataset 

Outperformed 
traditional methods 

SHAP, 
Grad-CAM 

4 Howard and 
Gugger (2020) 

Transfer Learning, Data 
Augmentation 

Enhanced model 
performance 

Large-scale 
datasets 
(ImageNet) 

Improved generalization Grad-CAM 

5 Litjens et al. 
(2016) 

CNN, Pre-trained 
Models 

Increased accuracy and 
efficiency in diagnosis 

Various medical 
datasets 

High accuracy, efficient 
processing 

SHAP, 
Heatmaps 

6 Coudray et al. 
(2018) 

CNN Mutation prediction from 
histopathology images 

TCGA 
data (NSCLC) 

High accuracy in 
mutation prediction 

SHAP, 
Grad-CAM 

7 Komura and 
Ishikawa (2018) 

Various ML Methods Comprehensive review of 
histopathology image 
analysis techniques 

Various datasets Summary of 
performance across 
techniques 

Not 
specified 

8 Russakov sky et 
al. (2015) 

ImageNet, Deep 
Learning Models 

Benchmarked performance 
of deep learning 
models 

Image Net dataset High performance on 
large-scale image 
classification 

Not 
specified 

9 Ronneberger et 
al. (2015) 

U-Net, Biomedical 
Image Segmentation 

Effective segmentation for 
biomedical images 

Medical image 
datasets 

High segmentation 
accuracy 

Visualization of 
feature maps 

10 Selvaraju et al. 
(2017) 

Grad-CAM Visual explanations for 
model predictions 

Various datasets Enhanced model 
interpretability 

Grad-CAM 

11 Lundberg and 
Lee (2017) 

SHAP Unified approach to 
interpreting model 
predictions 

Various datasets Enhanced 
interpretability 

SHAP 

12 Ching et al. 
(2018) 

Deep Learning, Medical 
Application s 

Opportunities and 
obstacles  in   deep 
learning for biology and 
medicine 

Various datasets Comprehensive 
overview 

Not 
specified 

13 Krizhevsk y et al. 
(2012) 

CNN, Image Net Significant improvement in 
image classification 

Image Net dataset Achieved state-of-the-
art performance 

Not specified 

14 LeCun et al. 
(2015) 

Deep Learning Overview of deep learning 
applications 

Various datasets High impact in various 
domains 

Not 
specified 

15 Litjens et al. 
(2017) 

Survey on Deep 
Learning in Medical 
Image Analysis 

Comprehensive review of 
deep learning in medical 
imaging 

Various medical 
datasets 

Summary of 
performance 
improvements 

Not 
specified 

16 Zhou et al. (2018) Deep Learning, Image 
Segmentation 

Improved 
segmentation accuracy in 
medical images 

Medical image 
datasets 

High segmentation 
accuracy 

Visualization of 
feature maps 

17 Shin et al. (2016) Transfer Learning, 
CNN 

Enhanced performance in 
chest X-ray 
analysis 

NIH 
Chest X-ray 14 
dataset 

High diagnostic 
accuracy 

SHAP 

18 Rajpurkar et al. 
(2017) 

CNN,CheXNet High Accuracy in 
pneumonia detection 

NIH 
Chest X-ray 14 
dataset 

Outperformed 
radiologists in some 
cases 

Grad-CAM 

19 Campanel la et 
al. (2019) 

Deep Learning, 
Histopathology 

High 
Accuracy in prostate 
Cancer detection 

Large-scale 
pathology dataset 

High diagnostic 
accuracy 

SHAP 

20 Hou et al. (2019) Transfer Learning, 
Deep Learning 

Improved performance in 
breast cancer 
classification 

TCGA and public 
datasets 

High classification 
accuracy 

Grad-CAM 
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Figure 1. Sample image Plot 

 

 

Figure 2.Color Channel Distribution 

 
Figure 3. Data Set Image Class Distribution 
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Figure 4. Confusion Matrix VGG16 Model. 

 

 
Figure 5. Confusion Matrix Mobile Net V2 Model. 

 

 
Figure 6. Training Model & Test Model Accuracy & Loss 
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Baseline CNN: A simple CNN was constructed with multiple 
convolutional and pooling layers followed by fully connected layers. 
This model served as a benchmark for comparison with more 
complex models. 
VGG16 with Transfer Learning: Transfer learning was applied 
using the pre-trained VGG16 model. The initial layers of VGG16 
were frozen to retain learned features from the ImageNet dataset, 
while the final layers were retrained using the ovarian cancer 
dataset. This fine-tuning allowed the model to adapt its learned 
features to the classification task. 
MobileNetV2 with Transfer Learning: Like VGG16, MobileNetV2 
was adapted using transfer learning. MobileNetV2 was selected for 
its efficiency and low computational cost, making it suitable for 
environments with limited computational resources. This model 
was fine-tuned in a similar fashion, with several layers frozen during 
the initial training phase. 
MobileNetV2 with SE Block Attention: To improve the model’s 
ability to focus on relevant regions of the input image, 
MobileNetV2 was further enhanced with Squeeze-and-Excitation 
(SE) blocks. These blocks allowed the model to dynamically 
recalibrate feature maps, improving its ability to highlight 
important spatial features in the histopathological images. 
The experimental analysis involved training several models, using 
both traditional CNNs and transfer learning techniques. The 
evaluation was conducted using robust metrics that 
comprehensively assessed the models' ability to classify ovarian 
cancer subtypes effectively. 
 
Results and Discussion 
The experimental results of this study demonstrated promising 
advancements in the classification of ovarian cancer subtypes using 
modern deep learning (DL) models (Goodfellow et al., 2016; 
Krizhevsky et al., 2012; LeCun et al., 2015). The data was split into 
70% for training, 15% for validation, and 15% for testing, allowing 
for a thorough and balanced assessment of the models. Multiple 
evaluation metrics, including accuracy, precision, recall, F1-score, 
and ROC-AUC, were applied to validate the effectiveness of the 
models (Selvaraju et al., 2017). These metrics provided 
comprehensive insights into each model’s performance across the 
ovarian cancer subtypes, revealing critical distinctions between 
baseline CNN and more advanced architectures such as VGG16 
and MobileNetV2 (Simonyan & Zisserman, 2014; Howard & 
Gugger, 2020). 
Performance of the Baseline CNN Model 
The basic convolutional neural network (CNN) model served as a 
benchmark in this study (Krizhevsky & Hinton, 2011). While it 
yielded reasonable results, its performance was highly variable 
across the subtypes. Specifically, the model produced inconsistent 
Area Under the Curve (AUC) values for precision-recall curves, 
highlighting its limitations in achieving stable sensitivity and 

specificity (LeCun et al., 1998). Moreover, the baseline model 
struggled to provide balanced F1-scores for all ovarian cancer 
subtypes, underlining the need for a more robust architecture 
(LeCun et al., 2015). 
The weaknesses of the baseline CNN emphasized the importance of 
moving beyond traditional convolutional models. The inherent 
complexity and heterogeneity of ovarian cancer histopathology 
require more sophisticated networks capable of capturing subtle 
variations in tissue morphology. Consequently, this study 
transitioned towards employing transfer learning, a technique that 
leverages pre-trained models and enhances performance in 
specialized tasks such as medical image analysis. 
Improved Results with Transfer Learning (VGG16) 
The introduction of transfer learning using the VGG16 model 
resulted in notable improvements over the baseline CNN 
(Simonyan & Zisserman, 2014). VGG16, pre-trained on the 
extensive ImageNet dataset, was able to utilize the learned weights 
and apply them to the ovarian cancer classification task 
(Russakovsky et al., 2015). This transfer of knowledge significantly 
boosted the accuracy and consistency of the model across all 
subtypes. 
The fine-tuning of VGG16’s layers allowed the model to adapt to 
the specific features present in the ovarian cancer dataset, resulting 
in better precision, recall, and F1-scores. This finding underscores 
the efficacy of transfer learning in medical image analysis, where 
labeled data is often scarce. By leveraging a model already trained 
on a diverse dataset, the VGG16 model achieved higher 
classification accuracy and minimized the need for large quantities 
of labeled medical images. 
Superior Performance with MobileNetV2 
Further augmentation was achieved with the MobileNetV2 model, 
which outperformed both the baseline CNN and VGG16 (Howard 
& Gugger, 2020). MobileNetV2’s architecture, designed for 
efficiency and low computational overhead, proved particularly 
advantageous in this context. Despite its lightweight nature, the 
model delivered higher accuracy, precision, and recall across all 
subtypes, demonstrating that a more efficient architecture could 
also yield superior performance. 
One key advantage of MobileNetV2 was its use of depthwise 
separable convolutions, which reduced the number of parameters 
and computational complexity. This design feature allowed 
MobileNetV2 to capture intricate patterns in histopathological 
images without requiring the same computational resources as 
more traditional models. The study found that this complexity, 
combined with the transfer learning approach, resulted in more 
accurate and stable classifications across all subtypes. 
Best Results with MobileNetV2 and SE Block Attention 
The MobileNetV2 model was further enhanced with Squeeze-and-
Excitation (SE) blocks, which improved the model’s ability to focus 
on the most important regions of the input images (Fu et al., 2020). 
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SE blocks dynamically recalibrate feature maps, allowing the model 
to emphasize the most relevant spatial features for classification. 
This improvement in attention mechanisms led to even higher 
accuracy and more balanced metrics across all ovarian cancer 
subtypes. 
The integration of SE blocks allowed the model to differentiate 
more effectively between subtle variations in tissue morphology, 
which is crucial in distinguishing ovarian cancer subtypes. The final 
MobileNetV2 model with SE Block Attention achieved the highest 
performance across all evaluation metrics, including precision, 
recall, F1-scores, and ROC-AUC. This model proved to be the most 
effective and stable method for classifying ovarian cancer subtypes 
in this study, demonstrating its potential utility in clinical 
applications. 
Implications for Clinical Practice 
The results of this study hold significant implications for clinical 
practice, particularly in enhancing the accuracy of ovarian cancer 
diagnosis (Berek & Hacker, 2015; Bowtell et al., 2015; Vaughan et 
al., 2011). By integrating advanced deep learning techniques with 
transfer learning, this research presents a powerful tool for assisting 
pathologists in identifying ovarian cancer subtypes with greater 
precision (McCluggage, 2011; Vang et al., 2009). 
Moreover, the combination of data augmentation techniques, such 
as random rotations, flips, and synthetic data generation, ensured 
that the models were robust and capable of generalizing to unseen 
data. This robustness is critical for clinical applications, where 
models must perform reliably across a wide range of patient data. 
Future Directions 
While the results of this study are encouraging, several avenues for 
further research remain. Increasing the size of the dataset for each 
subtype would allow for more refined models and reduce the 
potential for overfitting (Kurman & Shih, 2016). Additionally, 
exploring other advanced architectures, such as transformer-based 
models, could offer further improvements in performance 
(Coudray et al., 2021; Lu et al., 2021). Moreover, integrating 
multimodal data, such as histopathological images, genomic data, 
and clinical records, could provide a more holistic perspective on 
ovarian cancer diagnosis. Longitudinal studies that track patient 
outcomes over time could also help in designing personalized 
treatment plans, further enhancing the clinical applicability of these 
models. 
 
Conclusion 
This study demonstrated the potential of deep learning models, 
particularly those utilizing transfer learning, in the classification of 
ovarian cancer subtypes. While the baseline CNN provided a useful 
benchmark, the VGG16 and MobileNetV2 models significantly 
outperformed it, highlighting the benefits of transfer learning in 
medical image analysis. The MobileNetV2 model with SE Block 
Attention delivered the best results, offering a promising tool for 

improving diagnostic accuracy in ovarian cancer. Future work 
should focus on expanding datasets, exploring new architectures, 
and incorporating multimodal data to continue advancing the field 
of ovarian cancer diagnosis. 
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