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Abstract 
Background: Alzheimer’s disease (AD) presents a 

significant global health challenge, affecting millions and 

imposing substantial socioeconomic burdens, with 

healthcare costs exceeding US$100 billion annually. The 

disease's complexity is underscored by its slow 

progression and the pivotal role of amyloid plaques in its 

pathology. Despite advancements in understanding AD, 

critical questions regarding the mechanisms of amyloid 

plaque development and their relationship with 

neuroinflammation and angiogenesis remain. Methods: 

This study employed advanced imaging techniques and 

artificial intelligence (AI) to investigate the interplay 

between amyloid beta (Aβ) accumulation, 

neuroinflammation, and angiogenesis in AD. Magnetic 

resonance imaging (MRI) facilitated detailed assessments 

of brain structure alterations, while machine learning 

models enhanced diagnostic accuracy by analyzing 

imaging data and identifying patterns linked to disease 

progression. Results: The findings revealed a significant 

association between Aβ deposition and increased 

angiogenesis, contributing to neurovascular dysfunction 

and exacerbating neuroinflammation. AI-driven analyses  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

demonstrated improved diagnostic capabilities, detecting 

early changes in brain structure associated with mild 

cognitive impairment (MCI) and AD. Specifically, 

convolutional neural networks (CNNs) such as 

AlzheimerNet achieved remarkable accuracy in 

distinguishing AD from other neurodegenerative 

conditions. Conclusion: This research underscores the 

multifaceted nature of AD, highlighting the critical roles 

of amyloid plaques, neuroinflammation, and angiogenesis. 

The integration of AI and advanced imaging modalities 

offers promising avenues for early diagnosis and 

intervention, potentially transforming patient 

management strategies. Continued exploration of these 

pathways may yield effective therapeutic targets to 

mitigate the progression of AD and enhance patient 

outcomes. 
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Introduction 

Alzheimer’s disease (AD) has emerged as one of the most pressing 
health challenges of our time, affecting millions globally. The 
neurodegenerative disorder is particularly alarming due to its slow 
progression, complex pathology, and immense socioeconomic 
burden. Approximately 10% of the global population suffers from 
AD, and healthcare costs associated with managing the disease  
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exceed US$100 billion annually, creating significant strain on 
medical systems worldwide (Ahmad et al., 2020). The disease’s toll 
extends beyond economic impact, inflicting immense human 
suffering on individuals and their families. Despite significant 
strides in understanding AD, key questions remain unanswered, 
particularly concerning the development of amyloid plaques, a 
hallmark of the disease (Wu et al., 2023). These plaques, composed 
primarily of ϲ-amyloid peptide fragments, are central to AD 
pathology and have been linked to molecular lesions, brain 
inflammation, genetic factors, cerebral hypoperfusion, and 
hereditary influences (Fang et al., 2023). 
One of the striking features of AD is the increased angiogenesis 
observed in the brain, a process that is closely tied to 
neurodegeneration and neuroinflammation. The Aβ peptide, a 
primary constituent of amyloid plaques, negatively affects both 
neurons and vascular cells, including endothelial and smooth 
muscle cells (Lehrer & Rheinstein, 2022). Aβ deposition in the brain 
may contribute to hypoxia, leading to vascular dysfunction, which, 
in turn, induces inflammation and stimulates angiogenesis (Yu et 
al., 2020). The pathological angiogenesis that arises from these 
processes exacerbates neuroinflammation by allowing blood 
components to leak into the brain, potentially worsening AD 
symptoms (Fasoli et al., 2021). This feedback loop between vascular 
dysfunction, angiogenesis, and neuroinflammation highlights the 
complex interplay of factors driving AD progression. 
Interestingly, emerging evidence suggests that Aβ may directly 
trigger inflammatory responses, independent of vascular 
dysfunction (Ahmad et al., 2020). Given the close relationship 
between inflammation and angiogenesis, it is plausible that Aβ 
could directly induce angiogenesis before any observable vascular 
impairments. This notion has led to the hypothesis that 
angiogenesis, spurred by excessive Aβ accumulation, may be a 
precursor to AD pathogenesis. If true, this pathway presents new 
opportunities for therapeutic interventions aimed at halting or 
reversing disease progression in its early stages (Lehrer & 
Rheinstein, 2022). 
Neurovascular dysfunction has long been recognized as a key 
contributor to AD, and several studies have explored the 
mechanisms by which abnormal blood vessel growth may 
contribute to neurodegeneration (Ahmad et al., 2020). Vascular 
endothelial cells in the brain secrete neurotoxic proteins that, along 
with beta-amyloid plaque precursors, lead to neuron death in the 
cortex, further contributing to cognitive decline in AD patients 
(Bowirrat, 2022). The activation of endothelial cells through 
angiogenesis, triggered by inflammation and hypoxia, suggests that 
targeting these cells could be a promising approach in AD 
treatment. Developing anti-angiogenic drugs that specifically target 
the abnormal endothelial cells in the AD brain may hold the key to 
addressing the vascular component of the disease (Ahmad et al., 
2020). 

Over the last few decades, artificial intelligence (AI) has emerged as 
a powerful tool in the field of neurology, particularly in the study, 
diagnosis, and treatment of neurodegenerative diseases such as AD. 
With dementia accounting for 60% to 70% of AD cases, the 
potential for AI to revolutionize early detection and diagnosis is 
immense (Abduljawad et al., 2022). The chronic nature of AD, 
characterized by its gradual worsening of cognitive and behavioral 
functions, makes early diagnosis crucial for slowing disease 
progression and minimizing its impact on individuals and society 
(George et al., 2022). Computer-aided diagnostic (CAD) systems, 
powered by AI, have the potential to detect subclinical changes, 
provide insights into underlying mechanisms, and guide the 
development of neuroprotective therapies that may prevent or 
delay disease progression (Bhatele et al., 2022). These systems, 
which incorporate neuropsychological evaluations and advanced 
imaging techniques, offer new ways of monitoring and interpreting 
brain activity in AD patients (Khaliq et al., 2023). 
 
Magnetic resonance imaging (MRI) has been one of the most 
valuable tools in the diagnosis and study of AD. MRI provides high-
resolution, detailed images of brain structures, allowing clinicians 
and researchers to observe changes in the brain associated with AD. 
Structural MRI, in particular, has proven effective in detecting 
alterations in brain structure in individuals with mild cognitive 
impairment (MCI), a condition often considered a precursor to AD 
(Litvinenko & Lobzin, 2022). Research has shown that patients with 
MCI who later develop AD exhibit significant atrophy in key brain 
regions, such as the medial temporal lobes and posterior cingulate 
cortex, compared to healthy controls or patients with stable MCI 
(Maiese, 2023). These findings underscore the importance of early 
detection in AD, as structural changes in the brain can provide 
valuable clues about the disease’s progression. 
AI’s integration into diagnostic processes has further enhanced the 
accuracy and speed of AD diagnoses. By analyzing vast amounts of 
data from MRI scans and other diagnostic tests, AI systems can 
identify subtle patterns that may not be immediately apparent to 
human observers (Ratan et al., 2023). This ability to process and 
interpret large datasets in real-time enables more efficient and 
precise monitoring of neurodegenerative diseases, ultimately 
improving patient outcomes (Jung & Damoiseaux, 2024). The 
potential for AI to contribute to the early detection of AD is 
particularly exciting, as early intervention is critical for slowing 
disease progression and improving the quality of life for patients. 
AD is a multifaceted disease characterized by complex interactions 
between amyloid plaques, neuroinflammation, angiogenesis, and 
vascular dysfunction. While significant progress has been made in 
understanding these processes, key questions remain unanswered, 
particularly regarding the direct role of Aβ in angiogenesis and 
neuroinflammation. AI and advanced imaging techniques offer 
new avenues for early diagnosis and treatment, providing hope for 
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mitigating the devastating effects of AD. Future research will 
continue to explore these pathways, with the goal of developing 
more effective interventions to slow or halt the progression of this 
debilitating disease. 
 
2. Literature Review 
Recent studies have investigated advanced imaging techniques and 
machine learning (ML) models to enhance the diagnosis of 
neurodegenerative disorders, particularly Alzheimer’s disease (AD) 
(Wang et al., 2022). Optical coherence tomography (OCT) has been 
used to examine retinal changes in AD patients, with findings 
indicating that macular thickness and volume correlate with AD 
severity and biomarkers. These results underscore the potential of 
OCT, when combined with ML models, as an effective diagnostic 
tool for AD. Moreover, the study identified the most efficient ML 
models for diagnosing AD based on retinal thickness (Wang et al., 
2022). 
Another study developed a deep learning-based model to 
distinguish between various tauopathies, including AD, progressive 
supranuclear palsy (PSP), corticobasal degeneration (CBD), and 
Pick’s disease (PiD) (Koga et al., 2022). The research employed a 
YOLOv3 object detection system to classify five distinct types of tau 
inclusions, with a random forest classifier correctly identifying 29 
of 30 cases, achieving an average test score of 0.97. This highlights 
the efficacy of deep learning models in classifying different 
neurodegenerative diseases using digital histological images (Koga 
et al., 2022). 
The application of machine learning in analyzing biomarkers and 
clinical symptoms related to neurodegenerative diseases has also 
been explored (Khaliq et al., 2023). Techniques such as 
neuroimaging and motion tracking, coupled with deep learning 
algorithms like neural networks, allow for monitoring brain 
structure changes, motor symptoms, and cognitive decline. This 
approach significantly enhances the diagnostic capabilities for 
diseases like AD and Parkinson’s (Khaliq et al., 2023). 
In addition, plasma biomarkers, such as β-amyloid, tau, and 
neurodegeneration markers, have been studied in the context of AD 
diagnosis (Sun et al., 2022). These biomarkers play a critical role in 
improving diagnostic models for moderate to severe AD dementia. 
While few studies have focused on plasma inflammatory markers, 
the research emphasizes the importance of blood-based biomarkers 
in AD diagnosis (Sun et al., 2022). 
ML algorithms have also been used to classify neurodegenerative 
disorders using blood transcripts (Huseby et al., 2022). Small sets of 
transcripts were identified, demonstrating high sensitivity and 
specificity in distinguishing between diseases. The findings suggest 
the potential for a blood-based, non-invasive, and cost-effective 
screening method for neurodegenerative disorders (Huseby et al., 
2022). 

Finally, capsule networks have been shown to outperform deep 
transfer learning models in classifying AD, Parkinson’s disease, and 
healthy controls. With impressive accuracy, capsule networks 
present a promising tool for early screening of neurodegenerative 
disorders (Bhatele et al., 2022). 
 
3. Methodology of AI Model  
Artificial Intelligence (AI) and Machine Learning (ML) have 
revolutionized various sectors, including healthcare, by enhancing 
the accuracy and efficiency of disease detection and medical service 
delivery. In the field of neurodegenerative disorders, particularly 
Alzheimer’s disease (AD), AI and ML have been instrumental in 
automating diagnosis using advanced imaging techniques like 
structural magnetic resonance imaging (MRI). This discussion 
explores the role of AI and ML in detecting AD using structural 
MRI, emphasizing conventional ML methods and the process of 
feature extraction and classification for improved diagnostic 
accuracy. 
The complexity and abundance of brain imaging data create a 
significant challenge for medical professionals. The intricacies of 
brain structures necessitate a thorough and accurate analysis, which 
can be tedious and error-prone when reliant solely on human 
expertise. Doctors, in their assessments, often apply subjective 
judgment, which might lead to inconsistencies and missed 
diagnoses. Therefore, the demand for quantitative, objective 
measurements in neuroimaging has become paramount, especially 
for diseases like AD. Recent advancements in image processing 
have introduced computer-aided diagnostic (CAD) systems, which 
complement traditional medical image analysis by offering precise, 
consistent, and timely diagnostic solutions. CAD systems are 
particularly valuable for reducing the burden on radiologists and 
enhancing diagnostic accuracy, making them a critical asset in the 
detection of AD. 
The use of CAD in detecting Alzheimer’s disease has gained 
attention, particularly in recognizing AD’s progression from early 
stages. AD diagnosis involves intricate procedures, including image 
preprocessing, feature extraction, dimensionality reduction, feature 
evaluation, and classification. Typically, MRI-based methods for 
AD assessment focus on two primary components: feature 
extraction from MRI images and classifiers that utilize these 
extracted features. Popular classifiers used for this purpose include 
Bayesian classifiers, logistic regression, neural networks such as 
Support Vector Machines (SVMs), random forests, and 
discriminating analyses. 
Feature extraction, a crucial process in MRI analysis, can be divided 
into three approaches: voxel-based, region of interest (ROI)-based, 
and patch-based methods. These techniques focus on quantifying 
features like the volume, texture, or shape of brain structures. The 
selected features may come from various brain regions or specific 
patterns, with some studies concentrating on the hippocampus, 
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known for its association with memory and early-stage AD. 
Features might also be derived from sources such as grey matter, 
image similarities, topologies, or higher-order derivatives from the 
original images. 
Voxel-based approaches involve analyzing MRI data at a fine-
grained level, allowing for detailed comparisons across different 
brain regions. ROI-based methods, on the other hand, concentrate 
on predefined brain regions, such as the hippocampus, which is 
most affected during AD progression. Patch-based techniques 
divide the brain into smaller regions or "patches" for more localized 
feature extraction, enabling the detection of subtle changes in brain 
structure. By applying these techniques, researchers aim to 
differentiate between healthy controls and individuals with AD, 
particularly in the early stages when intervention could yield 
significant clinical benefits. 
Recent developments in deep learning, particularly convolutional 
neural networks (CNNs), have further improved the accuracy of 
AD detection. For instance, AlzheimerNet, a CNN classifier, was 
specifically developed to detect AD by analyzing MRI scans. 
AlzheimerNet outperformed other existing models, achieving an 
impressive test accuracy of 98.67% in identifying advanced stages of 
Alzheimer’s disease. This model’s success highlights the potential of 
CNNs in advancing AD diagnostics. Additionally, when compared 
with other state-of-the-art methods, AlzheimerNet’s superior 
performance underscores the effectiveness of deep learning 
approaches in this domain. 
Feature extraction in AD diagnosis is not limited to CNN-based 
models. Researchers have explored other techniques, including 
using voxel-based, ROI-based, and patch-based approaches to 
extract features from MRI scans. Shape, texture, and volume are 
properties that can be quantified through these techniques, 
providing critical insights into brain morphology changes 
associated with AD. Features extracted from grey matter or the 
hippocampus are particularly informative, as these regions undergo 
significant changes during the early stages of the disease. 
Furthermore, image similarities and topological features are also 
used to assess the degree of brain degeneration. 
The application of ML in AD diagnosis also extends to feature 
selection and dimensionality reduction, which are vital for 
optimizing classifier performance. Dimensionality reduction 
techniques, such as principal component analysis (PCA), help 
condense large datasets, making them more manageable while 
retaining essential information. Reducing the number of features 
helps mitigate overfitting and improves the classifier’s ability to 
generalize to new data. 
Once the features are extracted and reduced, they are fed into 
classifiers for diagnosis. Neural networks, SVMs, and logistic 
regression are among the popular classifiers used to distinguish 
between healthy individuals and those with AD. These classifiers 
are trained using labeled data to identify patterns associated with 

different stages of the disease. The accuracy of these classifiers is 
crucial for early detection, which is essential for timely intervention 
and treatment. 
The potential benefits of AI in early AD detection extend beyond 
diagnosis. For patients and caregivers, an early and accurate 
diagnosis can reduce anxiety and provide clarity on treatment 
options. For instance, early intervention can delay the disease’s 
progression, improving the patient’s quality of life. Moreover, early 
detection can reduce healthcare costs by minimizing the need for 
more extensive treatments in later stages of the disease. 
The process of training AI models for AD diagnosis, however, 
comes with challenges. One significant limitation is the reliance on 
large, well-labeled datasets. Models like AlzheimerNet require 
extensive data for training, which may not always be readily 
available. Additionally, long training periods can reduce the 
efficiency of these models in real-world clinical settings. Data 
standardization is another issue, as inconsistencies in data 
acquisition and preprocessing can affect model performance. 
Overcoming these challenges requires improved data collection 
practices and the development of more efficient models that can 
operate with smaller datasets. 
In the context of data processing, convolutional layers are widely 
used to extract spatial information through down-sampling and 
convolutions. After feature extraction, transformers can be 
employed to process these local features, breaking down visual data 
into smaller, more manageable components. This process, known 
as patching, allows the model to focus on local and global features, 
improving its ability to detect subtle changes in brain structure. 
Self-attention mechanisms, often used in transformers, further 
enhance the model’s capacity to learn relationships between 
different patches, allowing for more accurate classification. 
The self-attention process relies on covariance matrices to 
normalize the attention scores, ensuring gradient stability during 
training. This regularization technique, known as stochastic depth, 
helps prevent overfitting and makes deep neural networks more 
applicable to real-world scenarios. The combination of 
convolutional layers, transformers, and self-attention mechanisms 
has proven effective in capturing both local and global features, 
enhancing the model’s ability to detect AD with high accuracy. 
Finally, data normalization and handling of missing data points are 
critical steps in ensuring optimal model performance. AI models 
often require consistent and complete data for training. Missing 
data can be addressed through statistical imputation methods or 
removed if they do not significantly impact the overall dataset. Data 
normalization, which adjusts data points to a consistent scale, is also 
essential for improving classifier performance. 
AI and ML have shown immense promise in detecting Alzheimer’s 
disease using structural MRI. By automating the process of feature 
extraction, dimensionality reduction, and classification, AI systems 
can provide more accurate and timely diagnoses. While challenges 
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like data availability and model efficiency remain, continued 
advancements in deep learning and image processing techniques 
are expected to overcome these hurdles. The integration of AI into 
the diagnostic process for neurodegenerative diseases like AD 
represents a significant step forward in improving patient outcomes 
and reducing healthcare costs. 
 
AI model 
We have developed an AI model below (Figure 1).  
The input pictures 𝐼𝐼𝑥𝑥 and their corresponding labels are the starting 
points. With the help of data enhancement techniques, researchers 
can get improved copies of the data, which are represented as 𝐼𝐼𝑥𝑥′ . 
The approach begins by reducing and normalizing the data because 
of the restricted computing resources. The photos are thus reduced 
in size to 128 × 128. The variables 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚′  and 𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥′  Indicate the lowest 
and highest values for each occurrence after the augmentation 
phase. The data instance 𝐼𝐼𝑥𝑥"  is the outcome of the data 
augmentation, resizing, and scaling processes, as shown in Equation 
1. 

𝐼𝐼𝑥𝑥" = 𝐼𝐼𝑥𝑥′−𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
′

𝐼𝐼𝑚𝑚𝑚𝑚𝑥𝑥
′ −𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

′                                                                                                    (1) 

In processes that follow initial pre-processing, the whole picture is 
split into 256 smaller patches, with dimensions 8×8×3, during the 
patching procedure. These patches are then projected onto an area 
with lower dimensions. Equation 2 contains the mathematical 
method for applying patches to the data batch. In Equation 2, the 
patches of a single instance are represented by 𝐼𝐼𝑥𝑥"𝑋𝑋, where 𝑋𝑋 ranges 
from 1 to the number of patches, and 𝐾𝐾 stands for the learnable 
embeddings. 
𝑆𝑆𝑚𝑚 = [𝐼𝐼𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐; 𝐼𝐼𝑥𝑥"1 𝐾𝐾; 𝐼𝐼𝑥𝑥"2 𝐾𝐾… . 𝐼𝐼𝑥𝑥"𝑋𝑋 𝐾𝐾] + 𝐾𝐾𝑝𝑝𝑝𝑝𝑐𝑐                                                                
(2) 
Data processing uses convolutional layers, which extract spatial 
information by using down sampling and convolutions. After that, 
the transformer receives these present tokens representing these 
local characteristics and processes them further. It breaks down the 
visual data into smaller pieces, as seen in Equations 3 and 4. 

𝐺𝐺𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝑀𝑀𝐶𝐶𝐶𝐶2𝑑𝑑(𝐼𝐼𝑥𝑥" )))                                                                       
(3) 
𝑆𝑆𝑐𝑐 = [𝑖𝑖𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐;𝐺𝐺𝑥𝑥"1 𝐾𝐾;𝐺𝐺𝑥𝑥"2 𝐾𝐾… .𝐺𝐺𝑥𝑥"𝑋𝑋 𝐾𝐾] + 𝐾𝐾𝑝𝑝𝑝𝑝𝑐𝑐                                                              
(4) 
Using 8×8×3 patches in the patching module and 16×16×3 patches 
in the tokenization module, the location and channel knowledge 
offered by the images is successfully collected and represented. 
Larger token sizes capture a wider context, while smaller patch sizes 
allow for gathering more precise information; this enables the 
accomplishment of both global and specific context elements via the 
utilization of varied sizes. This enhanced data is useful for both 
attention systems because it facilitates the learning of local and 
global subtle features. The model learns the relationships between 
patched and tokens via self-attention, which helps it comprehend 

the picture's environmental data and spatial connections. Equations 
5 and 6 are the mathematical expressions for the self-attention 
process in classification time that is used with 𝑆𝑆𝑚𝑚 and 𝑆𝑆𝑐𝑐 . 

𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐶𝐶𝐴𝐴𝑖𝑖𝑀𝑀𝐶𝐶(𝑆𝑆𝑚𝑚, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑐𝑐) = 𝑆𝑆𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀𝑀𝑀 �𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚
𝐿𝐿

�𝐸𝐸𝑝𝑝����
� . 𝑆𝑆𝑐𝑐                                                        

(5) 
The covariance matrix, denoted as 𝜙𝜙, substitutes for the matrix 
product 𝑆𝑆𝑚𝑚𝑆𝑆𝑚𝑚𝐿𝐿 . In self-attention, the dot product attention ratings 

are normalized using �𝐸𝐸𝑝𝑝��� as a scale factor, maintaining gradient 

stability throughout training is aided by this. 

𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐶𝐶𝐴𝐴𝑖𝑖𝑀𝑀𝐶𝐶(𝑆𝑆𝑐𝑐 , 𝑆𝑆𝑐𝑐 , 𝑆𝑆𝑚𝑚) = 𝑆𝑆𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀𝑀𝑀 �𝑆𝑆𝑙𝑙𝑆𝑆𝑙𝑙
𝐿𝐿

�𝐸𝐸𝑝𝑝����
� . 𝑆𝑆𝑚𝑚                                                           

(6) 
The covariance matrix, denoted by 𝛹𝛹, substitutes for the matrix 
product 𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐𝐿𝐿. During training, stochastic depth is a method for 
haphazardly removing or skipping network layers. This 
regularisation approach aims to make deep neural networks more 
effective and applicable in real-world scenarios. One can see the 
application of stochastic depth to Equation 7 in Equation 8. 
Stochastic depth is based on the drop probability 𝜛𝜛, and the 
maintain probability is 1 minus 𝜚𝜚. Equation 7 describes the 
mathematical form of probability called keep probability. 
𝜚𝜚 = 1 −𝜛𝜛                                                                                                                   (7) 
Equation 8 shows the 𝒲𝒲𝛿𝛿  vector, which is produced from a random 
distribution. 
𝒲𝒲𝛿𝛿 = (𝜚𝜚 + 𝒲𝒲Θ)𝜖𝜖ℬ                                                                                                    (8) 
The uniform vector 𝒲𝒲Θ Equation 8 is chosen from a simple random 
distribution ranging from 0 to 1. It transforms the resultant vector 
values into integers inside the domain ℬ by using the floor function 
after adding 𝜚𝜚. Equation 9 shows the output that is generated after 
applying stochastic depth. 

𝑅𝑅𝑑𝑑𝑑𝑑 = 𝒲𝒲𝛿𝛿
𝜚𝜚

. 𝑆𝑆𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀𝑀𝑀 � Ψ

�𝐸𝐸𝑝𝑝����
� . 𝑆𝑆𝑚𝑚                                                                                

(9) 
In the event of patching, the output of self-attention is subjected to 
the dense transformation and concatenation procedures, denoted 
by 𝜔𝜔𝜃𝜃 , as outlined in Equation 10. 

𝜔𝜔𝜃𝜃 = 𝜔𝜔𝜃𝜃 �𝑆𝑆𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀𝑀𝑀 �
Φ

�𝐸𝐸𝑝𝑝����
� . 𝑆𝑆𝑐𝑐�                                                                            

(10) 
As seen in Equation 11, self-attention output undergoes the same 
changes as transformation. 

𝜔𝜔Ω = 𝜔𝜔Ω �
𝒲𝒲𝛿𝛿
𝜚𝜚

. 𝑆𝑆𝑀𝑀𝑆𝑆𝐴𝐴𝑆𝑆𝑀𝑀𝑀𝑀 � Ψ

�𝐸𝐸𝑝𝑝����
� . 𝑆𝑆𝑚𝑚�                                                                   

(11) 
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Figure 1. AI-based CAD for AD diagnostics. 
 

 
Figure 2a. Classification Accuracy.                                             Figure 2b. Training Accuracy. 
 

 
Figure 3a. Computation Time. 

 
Figure 3b. Computation Efficiency. 
 
 
 
 



 ANGIOTHERAPY                                                                         REVIEW 
 

https://doi.org/10.25163/angiotherapy.889851                                                                                                     1–10 | AGIOTHERAPY | Published online August 11, 2024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4a. Sensitivity ratio. 

 
Figure 4b. Probability ratio. 
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Lastly, the representations 𝜔𝜔 and Ω are then compounded by the 
matrix representing their weights, as shown in Equations 12 and 13, 
and attention weights are obtained. 
𝜔𝜔𝑢𝑢 = 𝜂𝜂(𝜔𝜔𝜃𝜃. 𝜉𝜉1)𝑥𝑥𝐿𝐿  .𝜔𝜔𝜃𝜃                                                                                                 (12) 
The product of 𝜔𝜔𝜃𝜃  and the trainable weight matrix 𝜉𝜉1, represented 
as 𝜂𝜂(𝜔𝜔𝜃𝜃. 𝜉𝜉1)𝑥𝑥𝐿𝐿 , are subjected to the softmax function 𝜂𝜂 in Equation 
12. When the weight matrix 𝜉𝜉 is multiplied by the output (𝜂𝜂), the 
soft-max function is applied, as shown by the formula 𝜂𝜂(𝜔𝜔𝜃𝜃 . 𝜉𝜉1)𝑥𝑥𝐿𝐿 . 
Likewise, the procedure outlined in Equation 13 is carried out 
during the concentration transmission step. 
Ω𝑢𝑢 = 𝜂𝜂(Ω𝜃𝜃. 𝜉𝜉2)𝑥𝑥𝐿𝐿  .Ω𝜃𝜃                                                                                                (13) 
To merge the weighted representations produced, we integrate a 
fusion function, ℋ𝜏𝜏, at last. This fusion function combines both 
representations' data. The fusion technique used in a particular 
example is concatenation, as shown in Equation 14. 
ℋ𝜏𝜏 = ℋ𝜏𝜏(𝜔𝜔𝑢𝑢 ,Ω𝑢𝑢)                                                                                                     (14) 
Two arguments, 𝜔𝜔𝑢𝑢 and 𝑢𝑢, are sent to the fusion function, 
represented as ℋ fusion in Equation 15. 

ℋ𝜏𝜏 = ℋ𝜏𝜏(𝜂𝜂(𝜔𝜔𝜃𝜃. 𝜉𝜉1)𝑥𝑥𝐿𝐿  .𝜔𝜔𝜃𝜃, 𝜂𝜂(Ω𝜃𝜃. 𝜉𝜉2)𝑥𝑥𝐿𝐿  .Ω𝜃𝜃)                                                             
(15) 
The multiclass classification job necessitates using a Softmax 
classifier, and Equation 15 shows the final representations fed into 
this algorithm. The procedure is repeated n times to learn 
representations efficiently, beginning with self-attention and 
continuing until Equation 15. Encoding patches or tokens into 
meaningful representations is generally called transformer 
encoding. 
Data points must be provided at regular intervals with no missing 
data points, even if optimal data is not essential for AI. There is a 
lack of data standardization throughout the data preparation phase. 
Assuming the data adhere to the asymmetry rule, the scenario may 
be fitted using predefined time points. In addition, statistical values 
should be used to replace missing data that is neither null nor a 
number. When there aren't enough data points or when the data are 
consistent, it's better to remove the variables to get better results. To 
enhance the performance metrics, it is necessary to normalize the 
data points based on their reference ranges. 
Dataset Description 
To train different machine learning models to detect patients with 
mild to moderate dementia, the team has discovered MRI-related 
data that the Scanning Research produced in an accessible 
Collection (OASIS) project. This data is accessible on both their 
website and Kaggle (Kaggle.com). About 150 people, aged 60 to 96 
are included in the collection based on longitudinal magnetic 
resonance imaging data. At least once, every topic was scanned. 
'Nondemented' was the treatment group for 72 of the participants. 
Sixty-four participants were initially classified as "Demented" and 
stayed in that category throughout the research. Fourteen 
individuals were initially classified as "Nondemented" but were later 

reclassified as "Demented" at a second evaluation. This group 
includes the 'Converted' items. 
Classification Accuracy Vs Training Accuracy 
The proportion of samples that were properly recognized was the 
accuracy statistic (Figure 2A, 2B). The following is Equation 16 for 
determining the binary classification's accuracy: 
𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝐴𝐴𝑀𝑀𝐴𝐴𝐴𝐴 = � 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇
�                                                                                                

(16) 
In Equation 16, where 𝑇𝑇𝑀𝑀 stands for correct optimistic instances 
work, 𝑇𝑇𝑇𝑇 for correct negative example projects, 𝐹𝐹𝑀𝑀 for incorrect 
positive example assignments to negative classes, and 𝐹𝐹𝑇𝑇 for 
incorrect negative instance responsibilities to certain classes. 
Figures 4a and 4b show that this article outlines a method to 
drastically reduce pre-training time by using the 2D transfer 
network's pre-training significance to extract features. Compared to 
the standard 2D transfer network, AD diagnosis's time and 
classification accuracy are significantly improved. Traditional 
machine learning classification works better when finding things 
that can be used for data mining. Nevertheless, picture classification 
isn't always perfect; for example, AD has hazy symptoms. 
According to the experimental results, this research's methodology 
outperforms prior approaches in terms of classification accuracy. 
Computation Time Vs Efficiency 
Figure 3 shows that the study's transfer network, a machine learning 
approach for AD-assisted diagnosis, has several benefits, including 
reduced training time and improved computing efficiency. Using 
Equations 5 and 6, the overall time required to complete each 
transfer technique, the times spent extracting barrier attributes, the 
highest capabilities, and identifying the level. Furthermore, 
although previous research has used multimodal classification 
methods to obtain high accuracy, the study uses MRI data to classify 
AD. This article's transfer network outperforms state-of-the-art 
approaches regarding AD classification accuracy. Nevertheless, 
training will take much longer due to the weight rising significantly 
when CAD-AD directly feeds 3D MRI image data into the deep 
network. Furthermore, the execution time is significantly reduced, 
albeit the following aspects require further examination. 
Sensitivity Vs Probability analysis 
Find all positive samples where the classifier's activity is shown by 
sensitivity, also called recall and true positive rate. The sensitivity 
metric displays the proportion of AD patients whose diagnoses 
were accurately determined relative to the total AD patients. Here 
is Equation 17 for determining sensitivity: 
𝑆𝑆𝑅𝑅𝐶𝐶𝑆𝑆𝑖𝑖𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
                                                                                                            

(17) 
Figure 4a shows that it is evident that the suggested strategy much 
surpasses the alternatives in three different categorization tasks. 
Also, while comparing CAD-AD vs. OCT, DSP, and ATN, the 
suggested technique attained 81.4%, respectively. In addition, 
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compared to traditional methodologies, our suggested approach 
had the maximum sensitivity across all tasks, suggesting that it may 
significantly improve the ability to distinguish between AD. 
Therefore, the suggested method can correctly identify individuals 
with AD compared to the approaches mentioned. Reasons for this 
performance include the suggested method's efficacy in merging 
multimodal data and its capacity to learn the high-level features 
from all samples in the provided dataset. 
Despite CAD-AD's demonstrated efficiency in AD classification, 
the CAD-AD model offers a formidable alternative. Using a 
sigmoid function that takes values between 0 and 1, we may 
determine the ultimate probability that a sample belongs to a 
certain category. After the loss was defined, Equation 7 & 8 showed 
the probability ratio for each category. However, transformers also 
do very well in these domains; they use self-attention processes to 
spot intricate spatial patterns, which are crucial for accurate 
diagnosis. It might also be challenging to understand model 
decisions, which are essential in medical applications, because of 
the complex hierarchical topologies of CNNs. Conversely, the 
attention processes of transformers allow for better interpretability 
and transparency in decision-making. 
 
5. Discussion and Conclusion 
Neurodegenerative disorders (NDDs) are characterized by the 
gradual loss of neurons due to a complex interplay of 
environmental, pharmacological, genetic, and epigenetic factors. 
The degeneration of oxidoreductase activity and antioxidant 
systems leads to the production of free radicals, which promote the 
aggregation of misfolded proteins within the central nervous system 
(CNS). This aggregation results in neuroinflammation, metabolic 
disturbances, and ultimately contributes to the onset of NDDs. 
Diagnosis of neurodegenerative diseases typically involves 
quantifying specific receptor binding, assessing changes in cellular 
metabolism, and identifying structural abnormalities. 
Neuroimaging techniques, particularly magnetic resonance 
imaging (MRI), play a crucial role in elucidating the metabolic fate 
of damaged neuronal cells and evaluating their receptor activity. A 
relatively novel approach in the diagnosis and prognosis of NDDs 
is metabolomics, which analyzes metabolic changes in the body that 
may indicate disease progression. 
Additionally, this review highlights the regulatory role of 
angiogenesis in various tumor hallmarks and its significant 
involvement in pathological changes associated with malignancy, 
including tumor formation, proliferation, and metastasis. Various 
antiangiogenic therapies, such as monoclonal antibodies, small 
molecule inhibitors, angiostatin, endostatin, and melatonin 
analogues, have been developed to inhibit angiogenesis by 
modulating the expression of angiogenic biomarkers. Targeting the 
angiogenic process is particularly promising, as it deprives tumors 
of the blood supply essential for their growth. 

To further explore the therapeutic potential of these antiangiogenic 
agents in treating conditions like Alzheimer’s disease, there is a 
pressing need for network-based investigations and advanced 
artificial intelligence (AI) processing. 
Accessible and timely medical treatment is essential for public 
health, and Computer-Aided Diagnosis (CAD) systems play a vital 
role in enhancing diagnostic efficiency and accuracy in medical 
imaging. CAD technology significantly improves the speed of 
disease detection, consistently performing well regardless of the 
operator’s experience, thereby mitigating the risk of human error. 
However, while the development of CAD systems presents 
numerous advantages, it also poses challenges that require 
collaboration among patients, healthcare professionals, and 
pharmaceutical stakeholders to address. 
The integration of CAD systems with imaging modalities such as 
digital mammography, computed tomography (CT), and MRI is on 
the horizon, offering the potential to identify a range of diseases and 
lesions. Routine clinical diagnostics represent another area where 
CAD can significantly contribute. Future research is expected to 
delve into various avenues, including the application of AI in 
image-based CAD, tailored treatments, remote diagnostics, and 
real-time assessments. The rise of telemedicine facilitates the 
adaptation of CAD systems for remote diagnosis, enhancing 
accessibility to care. 
In the coming years, CAD systems may evolve to synthesize data 
from X-rays, MRIs, CT scans, and digital medical records alongside 
non-imaging data. This integrated approach has the potential to 
personalize diagnosis and treatment based on a patient's unique 
genetic profile, medical history, and lifestyle factors. Ultimately, the 
integration of knowledge from both clinical and technical fields will 
be critical for the advancement of CAD systems, leading to 
improved outcomes in patient care. 
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